scholarly journals Linear combinations of orthogonal polynomials generating positive quadrature formulas

1990 ◽  
Vol 55 (191) ◽  
pp. 231-231 ◽  
Author(s):  
Franz Peherstorfer
1974 ◽  
Vol 10 (2) ◽  
pp. 263-270 ◽  
Author(s):  
G.D. Allen ◽  
C.K. Chui ◽  
W.R. Madych ◽  
F.J. Narcowich ◽  
P.W. Smith

By using a variational method, we study the structure of the Padé table for a formal power series. For series of Stieltjes, this method is employed to study the relations of the Padé approximants with orthogonal polynomials and gaussian quadrature formulas. Hence, we can study convergence, precise locations of poles and zeros, monotonicity, and so on, of these approximants. Our methods have nothing to do with determinant theory and the theory of continued fractions which were used extensively in the past.


2005 ◽  
Vol 2005 (13) ◽  
pp. 2071-2079 ◽  
Author(s):  
E. Berriochoa ◽  
A. Cachafeiro ◽  
J. M. Garcia-Amor

We obtain a property which characterizes the Chebyshev orthogonal polynomials of first, second, third, and fourth kind. Indeed, we prove that the four Chebyshev sequences are the unique classical orthogonal polynomial families such that their linear combinations, with fixed length and constant coefficients, can be orthogonal polynomial sequences.


2010 ◽  
Vol 233 (6) ◽  
pp. 1446-1452 ◽  
Author(s):  
Manuel Alfaro ◽  
Francisco Marcellán ◽  
Ana Peña ◽  
M. Luisa Rezola

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 617 ◽  
Author(s):  
Dmitry Dolgy ◽  
Dae Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions F 0 2 , F 1 2 , and F 2 3 .


1995 ◽  
Vol 117 (3) ◽  
pp. 533-544 ◽  
Author(s):  
Franz Peherstorfer

AbstractLet ψ be a distribution function on [−1,1] from the Szegö-class, which contains in particular all Jacobi weights, and let (pn) be the monic polynomials orthogonal with respect to dψ. Let m(n)∈ℕ, n∈ℕ, be non-decreasing with limn → ∞ (n − m(n)) = ∞, l(n)∈ℕ with 0 ≤ l(n) ≤ m(n), and μj, n ∈ℝ for j = 0, …, m(n), n∈ℕ. It is shown that for each sufficiently large n, has n−l(n) simple zeros in (−1, 1)and l(n) zeros in ℂ\[−1,1] if for n ≥ n0, has m(n) − l(n) zeros in the disc |z| ≤ r < 1, l(n) zeros outside of the disc |z| ≥ R > 1 and where q > 2 max {r, 1/R}. If m(n) is constant for n ≥ n0 then the statement holds even for such polynomials (pn) orthogonal with respect to a distribution dψ satisfying the weak assumption ψ′ > 0 a.e. on [−1, 1]. For linear combinations of polynomials orthogonal on the unit circle corresponding results are derived.


Sign in / Sign up

Export Citation Format

Share Document