scholarly journals Rigidity theorem for presheaves with $\Omega $-transfers

2015 ◽  
Vol 26 (6) ◽  
pp. 919-932
Author(s):  
A. Neshitov
Keyword(s):  
Author(s):  
Jun Ueki

AbstractWe formulate and prove a profinite rigidity theorem for the twisted Alexander polynomials up to several types of finite ambiguity. We also establish torsion growth formulas of the twisted homology groups in a {{\mathbb{Z}}}-cover of a 3-manifold with use of Mahler measures. We examine several examples associated to Riley’s parabolic representations of two-bridge knot groups and give a remark on hyperbolic volumes.


2016 ◽  
Vol 26 (01) ◽  
pp. 69-93 ◽  
Author(s):  
Paul-Henry Leemann

We give a characterization of isomorphisms between Schreier graphs in terms of the groups, subgroups and generating systems. This characterization may be thought as a graph analog of Mostow’s rigidity theorem for hyperbolic manifolds. This allows us to give a transitivity criterion for Schreier graphs. Finally, we show that Tarski monsters satisfy a strong simplicity criterion. This gives a partial answer to a question of Benjamini and Duminil-Copin.


2002 ◽  
Vol 132 (3) ◽  
pp. 439-452 ◽  
Author(s):  
OLIVER JENKINSON

We give a variation on the proof of Mostow's rigidity theorem, for certain hyperbolic 3-manifolds. This is based on a rigidity theorem for conjugacies between piecewise-conformal expanding Markov maps. The conjugacy rigidity theorem is deduced from a Livsic cocycle rigidity theorem that we prove for smooth, compact Lie group-valued cocycles over piecewise smooth expanding Markov maps.


2016 ◽  
Vol 27 (10) ◽  
pp. 1650085
Author(s):  
A. Baklouti ◽  
N. Elaloui ◽  
I. Kedim

A local rigidity theorem was proved by Selberg and Weil for Riemannian symmetric spaces and generalized by Kobayashi for a non-Riemannian homogeneous space [Formula: see text], determining explicitly which homogeneous spaces [Formula: see text] allow nontrivial continuous deformations of co-compact discontinuous groups. When [Formula: see text] is assumed to be exponential solvable and [Formula: see text] is a maximal subgroup, an analog of such a theorem states that the local rigidity holds if and only if [Formula: see text] is isomorphic to the group Aff([Formula: see text]) of affine transformations of the real line (cf. [L. Abdelmoula, A. Baklouti and I. Kédim, The Selberg–Weil–Kobayashi rigidity theorem for exponential Lie groups, Int. Math. Res. Not. 17 (2012) 4062–4084.]). The present paper deals with the more general context, when [Formula: see text] is a connected solvable Lie group and [Formula: see text] a maximal nonnormal subgroup of [Formula: see text]. We prove that any discontinuous group [Formula: see text] for a homogeneous space [Formula: see text] is abelian and at most of rank 2. Then we discuss an analog of the Selberg–Weil–Kobayashi local rigidity theorem in this solvable setting. In contrast to the semi-simple setting, the [Formula: see text]-action on [Formula: see text] is not always effective, and thus the space of group theoretic deformations (formal deformations) [Formula: see text] could be larger than geometric deformation spaces. We determine [Formula: see text] and also its quotient modulo uneffective parts when the rank [Formula: see text]. Unlike the context of exponential solvable case, we prove the existence of formal colored discontinuous groups. That is, the parameter space admits a mixture of locally rigid and formally nonrigid deformations.


Author(s):  
Sebastian van Strien

This chapter discusses Milnor's conjecture on monotonicity of entropy and gives a short exposition of the ideas used in its proof. It discusses the history of this conjecture, gives an outline of the proof in the general case, and describes the state of the art in the subject. The proof makes use of an important result by Kozlovski, Shen, and van Strien on the density of hyperbolicity in the space of real polynomial maps, which is a far-reaching generalization of the Thurston Rigidity Theorem. (In the quadratic case, density of hyperbolicity had been proved in studies done by M. Lyubich and J. Graczyk and G. Swiatek.) The chapter concludes with a list of open problems.


Sign in / Sign up

Export Citation Format

Share Document