Does the hyperbolicity of periodic orbits of a geodesic flow without conjugate points imply the Anosov property?

Author(s):  
Rafael O. Ruggiero
1993 ◽  
Vol 13 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Miguel Paternain

AbstractWe prove the following result: if M is a compact Riemannian surface whose geodesic flow is expansive, then M has no conjugate points. This result and the techniques of E. Ghys imply that all expansive geodesic flows of a compact surface are topologically equivalent.


1982 ◽  
Vol 69 (3) ◽  
pp. 375-392 ◽  
Author(s):  
A. Freire ◽  
R. Ma��

2016 ◽  
Vol 38 (3) ◽  
pp. 940-960
Author(s):  
PIERRE DEHORNOY ◽  
TALI PINSKY

We construct a template with two ribbons that describes the topology of all periodic orbits of the geodesic flow on the unit tangent bundle to any sphere with three cone points with hyperbolic metric. The construction relies on the existence of a particular coding with two letters for the geodesics on these orbifolds.


1996 ◽  
Vol 16 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Rafael Oswaldo Ruggierot

AbstractWe show that near the geodesic flow of a compact Riemannian manifold with no conjugate points which is expansive, every expansive geodesic flow has no conjugate points. We also prove that in the above hypotheses the geodesic flow istopologically stable.


2015 ◽  
Vol 26 (07) ◽  
pp. 1550047 ◽  
Author(s):  
Viktor L. Ginzburg ◽  
Başak Z. Gürel ◽  
Leonardo Macarini

In this paper, we prove the existence of infinitely many closed Reeb orbits for a certain class of contact manifolds. This result can be viewed as a contact analogue of the Hamiltonian Conley conjecture. The manifolds for which the contact Conley conjecture is established are the pre-quantization circle bundles with aspherical base. As an application, we prove that for a surface of genus at least two with a non-vanishing magnetic field, the twisted geodesic flow has infinitely many periodic orbits on every low energy level.


2008 ◽  
Vol 28 (1) ◽  
pp. 229-244
Author(s):  
RAFAEL OSWALDO RUGGIERO

AbstractLet (M,g) be a compact, smooth Riemannian manifold without conjugate points whose geodesic flow is expansive. We show that the geodesic flow of (M,g) has the accessibility property, namely, given two pointsθ1,θ2in the unit tangent bundle, there exists a continuous path joiningθ1,θ2formed by the union of a finite number of continuous curves, each of which is contained either in a strong stable set or in a strong unstable set of the dynamics. Since expansive geodesic flows of compact surfaces have no conjugate points, the accessibility property holds for every two-dimensional expansive geodesic flow.


2000 ◽  
Vol 20 (4) ◽  
pp. 1231-1251
Author(s):  
RAFAEL OSWALDO RUGGIERO

Let $(M,g)$ be a compact, differentiable Riemannian manifold without conjugate points and bounded asymptote. We show that, if the geodesic flow of $(M,g)$ is either topologically stable, or satisfies the $\epsilon$-shadowing property for some appropriate $\epsilon > 0$, then every abelian subgroup of the fundamental group of $M$ is infinite cyclic. The proof is based on the existence of homoclinic geodesics in perturbations of $(M,g)$, whenever there is a subgroup of the fundamental group of $M$ isomorphic to $\mathbb{Z}\times \mathbb{Z}$.


2009 ◽  
Vol 29 (6) ◽  
pp. 1951-1963
Author(s):  
CHRISTIAN PRIES

AbstractThis article is about the interplay between topological dynamics and differential geometry. One could ask how much information about the geometry is carried in the dynamics of the geodesic flow. It was proved in Paternain [Expansive geodesic flows on surfaces. Ergod. Th. & Dynam. Sys.13 (1993), 153–165] that an expansive geodesic flow on a surface implies that there exist no conjugate points. Instead of considering concepts that relate to chaotic behavior (such as expansiveness), we focus on notions for describing the stability of orbits in dynamical systems, specifically, equicontinuity and distality. In this paper we give a new sufficient and necessary condition for a compact Riemannian surface to have all geodesics closed; this is the idea of a P-manifold: (M,g) is a P-manifold if and only if the geodesic flow SM×ℝ→SM is equicontinuous. We also prove a weaker theorem for flows on manifolds of dimension three. Finally, we discuss some properties of equicontinuous geodesic flows on non-compact surfaces and on higher-dimensional manifolds.


Sign in / Sign up

Export Citation Format

Share Document