On the transcendence and algebraic independence of values of 𝐸-functions related by an arbitrary number of algebraic equations over the field of rational functions

Author(s):  
A. B. Šidlovskiĭ
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
E. H. Doha ◽  
D. Baleanu ◽  
A. H. Bhrawy ◽  
R. M. Hafez

A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.


1978 ◽  
Vol 26 (1) ◽  
pp. 31-45 ◽  
Author(s):  
J. H. Loxton ◽  
A. J. van der Poorten

AbstractWe consider algebraic independence properties of series such as We show that the functions fr(z) are algebraically independent over the rational functions Further, if αrs (r = 2, 3, 4, hellip; s = 1, 2, 3, hellip) are algebraic numbers with 0 < |αrs|, we obtain an explicit necessary and sufficient condition for the algebraic independence of the numbers fr(αrs) over the rationals.


2017 ◽  
Vol 27 (8) ◽  
pp. 1687-1705 ◽  
Author(s):  
Velinda Calvert ◽  
Mohsen Razzaghi

Purpose This paper aims to propose a new numerical method for the solution of the Blasius and magnetohydrodynamic (MHD) Falkner-Skan boundary-layer equations. The Blasius and MHD Falkner-Skan equations are third-order nonlinear boundary value problems on the semi-infinite domain. Design/methodology/approach The approach is based upon modified rational Bernoulli functions. The operational matrices of derivative and product of modified rational Bernoulli functions are presented. These matrices together with the collocation method are then utilized to reduce the solution of the Blasius and MHD Falkner-Skan boundary-layer equations to the solution of a system of algebraic equations. Findings The method is computationally very attractive and gives very accurate results. Originality/value Many problems in science and engineering are set in unbounded domains. One approach to solve these problems is based on rational functions. In this work, a new rational function is used to find solutions of the Blasius and MHD Falkner-Skan boundary-layer equations.


2020 ◽  
pp. 60-73
Author(s):  
Yu V Nemirovskii ◽  
S V Tikhonov

The work considers rods with a constant cross-section. The deformation law of each layer of the rod is adopted as an approximation by a polynomial of the second order. The method of determining the coefficients of the indicated polynomial and the limit deformations under compression and tension of the material of each layer is described with the presence of three traditional characteristics: modulus of elasticity, limit stresses at compression and tension. On the basis of deformation diagrams of the concrete grades B10, B30, B50 under tension and compression, these coefficients are determined by the method of least squares. The deformation diagrams of these concrete grades are compared on the basis of the approximations obtained by the limit values and the method of least squares, and it is found that these diagrams approximate quite well the real deformation diagrams at deformations close to the limit. The main problem in this work is to determine if the rod is able withstand the applied loads, before intensive cracking processes in concrete. So as a criterion of the conditional limit state this work adopts the maximum permissible deformation value under tension or compression corresponding to the points of transition to a falling branch on the deformation diagram level in one or more layers of the rod. The Kirchhoff-Lyav classical kinematic hypotheses are assumed to be valid for the rod deformation. The cases of statically determinable and statically indeterminable problems of bend of the rod are considered. It is shown that in the case of statically determinable loadings, the general solution of the problem comes to solving a system of three nonlinear algebraic equations which roots can be obtained with the necessary accuracy using the well-developed methods of computational mathematics. The general solution of the problem for statically indeterminable problems is reduced to obtaining a solution to a system of three nonlinear differential equations for three functions - deformation and curvatures. The Bubnov-Galerkin method is used to approximate the solution of this equation on the segment along the length of the rod, and specific examples of its application to the Maple system of symbolic calculations are considered.


Sign in / Sign up

Export Citation Format

Share Document