orthogonal projectors
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 55 (2) ◽  
pp. 181-187
Author(s):  
N. S. Sushchyk ◽  
V. M. Degnerys

We study the problem of a special factorisation of an orthogonal projector~$P$ acting in the Hilbert space $L_2(\mathbb R)$ with $\dim\ker P<\infty$. In particular, we prove that the orthogonal projector~$P$ admits a special factorisation in the form$P=VV^*$, where $V$ is an isometric upper-triangular operator in the Banach algebra of all linear continuous operators in $L_2(\mathbb R)$. Moreover, wegive an explicit formula for the operator $V$.


2020 ◽  
Vol 171 (1) ◽  
Author(s):  
F. Bagarello ◽  
S. Kużel

AbstractIt is known that self-adjoint Hamiltonians with purely discrete eigenvalues can be written as (infinite) linear combination of mutually orthogonal projectors with eigenvalues as coefficients of the expansion. The projectors are defined by the eigenvectors of the Hamiltonians. In some recent papers, this expansion has been extended to the case in which these eigenvectors form a Riesz basis or, more recently, a ${\mathcal{D}}$ D -quasi basis (Bagarello and Bellomonte in J. Phys. A 50:145203, 2017, Bagarello et al. in J. Math. Phys. 59:033506, 2018), rather than an orthonormal basis. Here we discuss what can be done when these sets are replaced by Parseval frames. This interest is motivated by physical reasons, and in particular by the fact that the mathematical Hilbert space where the physical system is originally defined, contains sometimes also states which cannot really be occupied by the physical system itself. In particular, we show what changes in the spectrum of the observables, when going from orthonormal bases to Parseval frames. In this perspective we propose the notion of $E$ E -connection for observables. Several examples are discussed.


2020 ◽  
Vol 3 (1) ◽  
pp. 26-28
Author(s):  
Komiljon Kodirov ◽  
Yuldoshali Yigitaliev

In the paper subadditive measure on the lattice of orthogonal projectors of von Neumann algebra is considered. The basic peoperties of the subadditive measure are estabelished and proved.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 37 ◽  
Author(s):  
Masanao Ozawa ◽  
Andrei Khrennikov

Recently, quantum formalism started to be actively used outside of quantum physics: in psychology, decision-making, economics, finances, and social science. Human psychological behavior is characterized by a few basic effects; one of them is the question order effect (QOE). This effect was successfully modeled (Busemeyer–Wang) by representing questions A and B by Hermitian observables and mental-state transformations (back action of answering) by orthogonal projectors. However, then it was demonstrated that such representation cannot be combined with another psychological effect, known as the response replicability effect (RRE). Later, this no-go result was generalized to representation of questions and state transformations by quantum instruments of the atomic type. In light of these results, the possibility of using quantum formalism in psychology was questioned. In this paper, we show that, nevertheless, the combination of the QOE and RRE can be modeled within quantum formalism, in the framework of theory of non-atomic quantum instruments.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 56 ◽  
Author(s):  
Galina Kurina

Under some conditions, an asymptotic solution containing boundary functions was constructed in a paper by Vasil’eva and Butuzov (Differ. Uravn. 1970, 6(4), 650–664 (in Russian); English transl.: Differential Equations 1971, 6, 499–510) for an initial value problem for weakly non-linear differential equations with a small parameter standing before the derivative, in the case of a singular matrix A ( t ) standing in front of the unknown function. In the present paper, the orthogonal projectors onto k e r A ( t ) and k e r A ( t ) ′ (the prime denotes the transposition) are used for asymptotics construction. This approach essentially simplifies understanding of the algorithm of asymptotics construction.


2019 ◽  
Vol 7 (1) ◽  
pp. 142-212 ◽  
Author(s):  
Yongge Tian

Abstract Sum and intersection of linear subspaces in a vector space over a field are fundamental operations in linear algebra. The purpose of this survey paper is to give a comprehensive approach to the sums and intersections of two linear subspaces and their orthogonal complements in the finite-dimensional complex vector space. We shall establish a variety of closed-form formulas for representing the direct sum decompositions of the m-dimensional complex column vector space 𝔺m with respect to a pair of given linear subspaces 𝒨 and 𝒩 and their operations, and use them to derive a huge amount of decomposition identities for matrix expressions composed by a pair of orthogonal projectors onto the linear subspaces. As applications, we give matrix representation for the orthogonal projectors onto the intersections of a pair of linear subspaces using various matrix decomposition identities and Moore–Penrose inverses; necessary and su˚cient conditions for two linear subspaces to be in generic position; characterization of the commutativity of a pair of orthogonal projectors; necessary and su˚cient conditions for equalities and inequalities for a pair of subspaces to hold; equalities and inequalities for norms of a pair of orthogonal projectors and their operations; as well as a collection of characterizations of EP-matrix.


2017 ◽  
Vol 42 ◽  
pp. 85-93 ◽  
Author(s):  
Markus Passenbrunner

Sign in / Sign up

Export Citation Format

Share Document