On bounds of convexity for starlike functions of order 𝛼 in the circle |𝑧|<1 and in the circular region 0<|𝑧|<1

Author(s):  
V. A. Zmorovič
Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 629 ◽  
Author(s):  
Muhammad Arif ◽  
Omar Barkub ◽  
Hari Srivastava ◽  
Saleem Abdullah ◽  
Sher Khan

The motive behind this article is to apply the notions of q-derivative by introducing some new families of harmonic functions associated with the symmetric circular region. We develop a new criterion for sense preserving and hence the univalency in terms of q-differential operator. The necessary and sufficient conditions are established for univalency for this newly defined class. We also discuss some other interesting properties such as distortion limits, convolution preserving, and convexity conditions. Further, by using sufficient inequality, we establish sharp bounds of the real parts of the ratios of harmonic functions to its sequences of partial sums. Some known consequences of the main results are also obtained by varying the parameters.


2020 ◽  
Vol 61(12) (2) ◽  
pp. 381-392
Author(s):  
Gangadhara Murugusundaramoorthy ◽  
◽  
Janusz Sokol ◽  
Keyword(s):  

Author(s):  
Deepali Khurana ◽  
Raj Kumar ◽  
Sibel Yalcin

We define two new subclasses, $HS(k, \lambda, b, \alpha)$ and \linebreak $\overline{HS}(k, \lambda, b, \alpha)$, of univalent harmonic mappings using multiplier transformation. We obtain a sufficient condition for harmonic univalent functions to be in $HS(k,\lambda,b,\alpha)$ and we prove that this condition is also necessary for the functions in the class $\overline{HS} (k,\lambda,b,\alpha)$. We also obtain extreme points, distortion bounds, convex combination, radius of convexity and Bernandi-Libera-Livingston integral for the functions in the class $\overline{HS}(k,\lambda,b,\alpha)$.


2020 ◽  
Vol 70 (4) ◽  
pp. 849-862
Author(s):  
Shagun Banga ◽  
S. Sivaprasad Kumar

AbstractIn this paper, we use the novel idea of incorporating the recently derived formula for the fourth coefficient of Carathéodory functions, in place of the routine triangle inequality to achieve the sharp bounds of the Hankel determinants H3(1) and H2(3) for the well known class 𝓢𝓛* of starlike functions associated with the right lemniscate of Bernoulli. Apart from that the sharp bound of the Zalcman functional: $\begin{array}{} |a_3^2-a_5| \end{array}$ for the class 𝓢𝓛* is also estimated. Further, a couple of interesting results of 𝓢𝓛* are also discussed.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Adam Lecko ◽  
Gangadharan Murugusundaramoorthy ◽  
Srikandan Sivasubramanian

AbstractIn this paper, we define and study a class of analytic functions in the unit disc by modification of the well-known Robertson’s analytic formula for starlike functions with respect to a boundary point combined with subordination. An integral representation and growth theorem are proved. Early coefficients and the Fekete–Szegö functional are also estimated.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 721 ◽  
Author(s):  
Oh Sang Kwon ◽  
Young Jae Sim

Let SR * be the class of starlike functions with real coefficients, i.e., the class of analytic functions f which satisfy the condition f ( 0 ) = 0 = f ′ ( 0 ) − 1 , Re { z f ′ ( z ) / f ( z ) } > 0 , for z ∈ D : = { z ∈ C : | z | < 1 } and a n : = f ( n ) ( 0 ) / n ! is real for all n ∈ N . In the present paper, it is obtained that the sharp inequalities − 4 / 9 ≤ H 3 , 1 ( f ) ≤ 3 / 9 hold for f ∈ SR * , where H 3 , 1 ( f ) is the third Hankel determinant of order 3 defined by H 3 , 1 ( f ) = a 3 ( a 2 a 4 − a 3 2 ) − a 4 ( a 4 − a 2 a 3 ) + a 5 ( a 3 − a 2 2 ) .


2011 ◽  
Vol 62 (2) ◽  
pp. 611-619 ◽  
Author(s):  
Janusz Sokół
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document