scholarly journals The iso1 gene of Chlamydomonas is involved in sex determination.

1995 ◽  
Vol 6 (1) ◽  
pp. 87-95 ◽  
Author(s):  
A M Campbell ◽  
H J Rayala ◽  
U W Goodenough

Sexual differentiation in the heterothallic alga Chlamydomonas reinhardtii is controlled by two mating-type loci, mt+ and mt-, which behave as a pair of alleles but contain different DNA sequences. A mutation in the mt minus-linked imp11 gene has been shown previously to convert a minus gamete into a pseudo-plus gamete that expresses all the plus gametic traits except the few encoded by the mt+ locus. Here we describe the iso1 mutation which is unlinked to the mt- locus but is expressed only in minus gametes (sex-limited expression). A population of minus gametes carrying the iso1 mutation behaves as a mixture of minus and pseudo-plus gametes: the gametes isoagglutinate but they do not fuse to form zygotes. Further analysis reveals that individual gametes express either plus or minus traits: a given cell displays one type of agglutinin (flagellar glycoprotein used for sexual adhesion) and one type of mating structure. The iso1 mutation identifies a gene unlinked to the mating-type locus that is involved in sex determination and the repression of plus-specific genes.

Cell ◽  
1994 ◽  
Vol 76 (6) ◽  
pp. 1135-1145 ◽  
Author(s):  
Patrick J. Ferris ◽  
Ursula W. Goodenough

2004 ◽  
Vol 165 (6) ◽  
pp. 759-765 ◽  
Author(s):  
Creighton T. Tuzon ◽  
Britta Borgstrom ◽  
Dietmar Weilguny ◽  
Richard Egel ◽  
Julia Promisel Cooper ◽  
...  

Telomeres share the ability to silence nearby transcription with heterochromatin, but the requirement of heterochromatin proteins for most telomere functions is unknown. The fission yeast Rik1 protein is required for heterochromatin formation at centromeres and the mating-type locus, as it recruits the Clr4 histone methyltransferase, whose modification of histone H3 triggers binding by Swi6, a conserved protein involved in spreading of heterochromatin. Here, we demonstrate that Rik1 and Clr4, but not Swi6, are required along with the telomere protein Taz1 for crucial chromosome movements during meiosis. However, Rik1 is dispensable for the protective roles of telomeres in preventing chromosome end-fusion. Thus, a Swi6-independent heterochromatin function distinct from that at centromeres and the mating-type locus operates at telomeres during sexual differentiation.


Cryptococcus ◽  
2014 ◽  
pp. 139-149 ◽  
Author(s):  
Yen-Ping Hsueh ◽  
Banu Metin ◽  
Keisha Findley ◽  
Marianela Rodriguez-Carres ◽  
Joseph Heitman

1986 ◽  
Vol 6 (6) ◽  
pp. 2185-2197 ◽  
Author(s):  
E Gottlin-Ninfa ◽  
D B Kaback

Strains of the yeast Saccharomyces cerevisiae that are heterozygous for the mating-type locus (MATa/MAT alpha) undergo meiosis and spore formation when they are starved for nitrogen and are provided with a nonfermentable carbon source such as potassium acetate. Haploids and diploids homozygous for the mating-type locus (MAT alpha/MAT alpha or MATa/MATa) are asporogenous and undergo neither meiosis nor spore formation when incubated under the same conditions. A small number of genes produce transcripts that appear to be induced specifically in sporulating cells. These transcripts either are not found or are present at much lower levels both in vegetatively growing cells and in cells from asporogenous strains that have been incubated in sporulation medium. Several genes complementary to these MATa/MAT alpha-dependent sporulation-induced transcripts were isolated from a gene-size insert yeast-lambda recombinant DNA library, by differential-plaque filter hybridization. An attempt was made to determine the function of three of these genes by mutating them in the yeast genome with in vitro mutagenesis and one-step gene replacement techniques. One gene was extensively disrupted by both a 0.3-kilobase deletion and the insertion of two large DNA sequences at different sites within the gene. Surprisingly, this compound mutation did not appear to affect meiosis or the production of viable ascospores, indicating that this gene was dispensable for differentiation. The other two genes were disrupted by simple insertion mutations at a site where it was possible that they might still possess some gene activity. These mutations also did not appear to affect sporulation. These results suggest that not all sporulation-induced genes are essential for meiosis and the production of viable ascospores under the conditions examined.


2019 ◽  
Author(s):  
Ahmed R. Hasan ◽  
Jaspreet K. Duggal ◽  
Rob W. Ness

SummaryRationaleRecombination suppression in sex chromosomes and mating type loci can lead to degeneration due to reduced selection efficacy and Muller’s ratchet effects. However, genetic exchange in the form of non-crossover gene conversions may still take place within crossover-suppressed regions. Recent work has found evidence that gene conversion may explain the low levels of allelic differentiation in the dimorphic mating type locus (MT) of the isogamous alga Chlamydomonas reinhardtii. However, no one has tested whether gene conversion is sufficient to avoid the degeneration of functional sequence within MT.MethodsHere, we calculate levels of linkage disequilibrium (LD) across MT as a proxy for recombination rate and investigate its relationship to patterns of population genetic variation and the efficacy of selection in the region.ResultsWe find that levels of LD predict selection efficacy across MT, and that purifying selection is stronger in shared genes than MT-limited genes to the point of being equivalent to that of autosomal genes.ConclusionsWe argue that isogamous systems without secondary sexual characteristics exhibit reduced selective pressure to differentiate sex chromosomes, and that recombination via gene conversion plays an important role in both reducing differentiation and preventing degeneration of crossover suppressed mating type loci.


2013 ◽  
Vol 13 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Viplendra P. S. Shakya ◽  
Alexander Idnurm

ABSTRACTUniparental inheritance (UPI) of mitochondria is common among eukaryotes. The underlying molecular basis by which the sexes of the parents control this non-Mendelian pattern of inheritance is yet to be fully understood. Two major factors have complicated the understanding of the role of sex-specific genes in the UPI phenomenon: in many cases (i) fusion occurs between cells of unequal size or (ii) mating requires a large region of the genome or chromosome that includes genes unrelated to sex determination. The fungusPhycomyces blakesleeanusis a member of the Mucoromycotina and has a simple mating type locus encoding only one high-mobility group (HMG) domain protein, and mating occurs by fusion of isogamous cells, thus providing a model system without the limitations mentioned above. Analysis of more than 250 progeny from a series of genetic crosses between wild-type strains ofPhycomycesrevealed a correlation between the individual genes in the mating type locus and UPI of mitochondria. Inheritance is from the plus (+) sex type and is associated with degradation of the mtDNA from the minus (−) parent. These findings suggest that UPI can be directly controlled by genes that determine sex identity, independent of cell size or the complexity of the genetic composition of a sex chromosome.


2019 ◽  
Vol 224 (3) ◽  
pp. 1339-1348 ◽  
Author(s):  
Ahmed R. Hasan ◽  
Jaspreet K. Duggal ◽  
Rob W. Ness

Sign in / Sign up

Export Citation Format

Share Document