chromosome movements
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 16)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Catriona Munro ◽  
Hugo Cadis ◽  
Evelyn Houliston ◽  
Jean-Ren&eacute Huynh

During meiosis, each duplicated chromosome pairs and recombines with its unique homolog to ensure the shuffling of genetic information across generations. Functional studies in classical model organisms have revealed a surprising diversity in the chronology and interdependency of the earliest meiotic steps such as chromosome movements, pairing, association via Synaptonemal Complex formation (synapsis), recombination and the formation of chiasmata. A key player is Spo11, an evolutionarily conserved topoisomerase-related transesterase that initiates meiotic recombination via the catalysis of programmed DNA double stranded breaks (DSBs). While DSBs are required for pairing and synapsis in budding yeast and mouse, alternative pathways are employed during female meiosis of the fruit fly and nematode Caenorhabditis elegans. Here, to provide a comparative perspective on meiotic regulation from a distinct animal clade, we chart gametogenesis in Clytia hemisphaerica jellyfish and examine the role of Spo11 using CRISPR-Cas9 mutants, generated clonally from F0 polyp colonies. Spo11 mutant females fail to assemble synaptonemal complexes and chiasmata, such that homologous chromosome pairs disperse during oocyte growth. Subsequent meiotic divisions are abnormal but produce viable progeny. Clytia thus shares an ancient eukaryotic dependence of synapsis and chromosome segregation on Spo11-generated DSBs. It provides a valuable additional experimental model for dissecting meiotic mechanisms during animal gametogenesis, and for building a comparative framework for distinguishing evolutionarily conserved versus flexible features of meiosis.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2013
Author(s):  
Daniel León-Periñán ◽  
Alfonso Fernández-Álvarez

Nuclear movements during meiotic prophase, driven by cytoskeleton forces, are a broadly conserved mechanism in opisthokonts and plants to promote pairing between homologous chromosomes. These forces are transmitted to the chromosomes by specific associations between telomeres and the nuclear envelope during meiotic prophase. Defective chromosome movements (CMs) harm pairing and recombination dynamics between homologues, thereby affecting faithful gametogenesis. For this reason, modelling the behaviour of CMs and their possible microvariations as a result of mutations or physico-chemical stress is important to understand this crucial stage of meiosis. Current developments in high-throughput imaging and image processing are yielding large CM datasets that are suitable for data mining approaches. To facilitate adoption of data mining pipelines, we present ChroMo, an interactive, unsupervised cloud application specifically designed for exploring CM datasets from live imaging. ChroMo contains a wide selection of algorithms and visualizations for time-series segmentation, motif discovery, and assessment of causality networks. Using ChroMo to analyse meiotic CMs in fission yeast, we found previously undiscovered features of CMs and causality relationships between chromosome morphology and trajectory. ChroMo will be a useful tool for understanding the behaviour of meiotic CMs in yeast and other model organisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanyan Chen ◽  
Yan Wang ◽  
Juan Chen ◽  
Wu Zuo ◽  
Yong Fan ◽  
...  

AbstractChromosomes pair and synapse with their homologous partners to segregate correctly at the first meiotic division. Association of telomeres with the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex composed of SUN1 and KASH5 enables telomere-led chromosome movements and telomere bouquet formation, facilitating precise pairwise alignment of homologs. Here, we identify a direct interaction between SUN1 and Speedy A (SPDYA) and determine the crystal structure of human SUN1-SPDYA-CDK2 ternary complex. Analysis of meiosis prophase I process in SPDYA-binding-deficient SUN1 mutant mice reveals that the SUN1-SPDYA interaction is required for the telomere-LINC complex connection and the assembly of a ring-shaped telomere supramolecular architecture at the nuclear envelope, which is critical for efficient homologous pairing and synapsis. Overall, our results provide structural insights into meiotic telomere structure that is essential for meiotic prophase I progression.


2021 ◽  
Vol 32 (10) ◽  
pp. 1020-1032
Author(s):  
Régis E. Meyer ◽  
Aaron R. Tipton ◽  
Rebecca LaVictoire ◽  
Gary J. Gorbsky ◽  
Dean S. Dawson

Mps1 is a kinase that regulates several steps in mitosis and meiosis. Mps1 is essential for the spindle checkpoint and helps stabilize attachment of kinetochores to microtubules. Here we show that following microtubule attachment, Mps1 promotes microtubule depolymerization to trigger migration of the chromosome toward the spindle pole.


2021 ◽  
Author(s):  
Holly Merta ◽  
Jake W. Carrasquillo Rodríguez ◽  
Maya I. Anjur-Dietrich ◽  
Mitchell E. Granade ◽  
Tevis Vitale ◽  
...  

SummaryThe endoplasmic reticulum (ER) dramatically restructures in open mitosis to become excluded from the mitotic spindle; however, the significance of ER reorganization to mitotic progression is not known. Here, we demonstrate that limiting ER membrane biogenesis enables mitotic chromosome movements necessary for chromosome biorientation and prevention of micronuclei formation. Aberrantly expanded ER membranes increase the effective viscosity of the mitotic cytoplasm to physically restrict chromosome dynamics – slowed chromosome motions impede correction of mitotic errors induced by transient spindle disassembly, leading to severe micronucleation. We define the mechanistic link between regulation of ER membrane biogenesis and mitotic fidelity by demonstrating that a CTDNEP1-lipin 1-mTOR regulatory network limits ER lipid synthesis to prevent chromosome missegregation. Together, this work shows that ER membranes reorganize in mitosis to enable chromosome movements necessary for mitotic error correction and reveal dysregulated lipid metabolism as a potential source of aneuploidy in cancer cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Manickam Gurusaran ◽  
Owen Richard Davies

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex mechanically couples cytoskeletal and nuclear components across the nuclear envelope to fulfil a myriad of cellular functions, including nuclear shape and positioning, hearing, and meiotic chromosome movements. The canonical model is that 3:3 interactions between SUN and KASH proteins underlie the nucleocytoskeletal linkages provided by the LINC complex. Here, we provide crystallographic and biophysical evidence that SUN-KASH is a constitutive 6:6 complex in which two constituent 3:3 complexes interact head-to-head. A common SUN-KASH topology is achieved through structurally diverse 6:6 interaction mechanisms by distinct KASH proteins, including zinc-coordination by Nesprin-4. The SUN-KASH 6:6 interface provides a molecular mechanism for the establishment of integrative and distributive connections between 3:3 structures within a branched LINC complex network. In this model, SUN-KASH 6:6 complexes act as nodes for force distribution and integration between adjacent SUN and KASH molecules, enabling the coordinated transduction of large forces across the nuclear envelope.


2020 ◽  
Author(s):  
Régis E Meyer ◽  
Aaron R Tipton ◽  
Gary J Gorbsky ◽  
Dean S Dawson

ABSTRACTIn prophase of meiosis I, homologous partner chromosomes pair and become connected by crossovers. Chiasmata, the connections formed between the partners enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiosis I spindle forms in prometaphase, most bivalents are associated with a single spindle pole and go through a series of oscillations on the spindle, attaching to and detaching from microtubules until the partners of the bivalent are bi-oriented, that is, attached to microtubules from opposite sides of the spindle, and prepared to be segregated at anaphase I. The conserved, kinetochore-associated kinase, Mps1, is essential for the bivalents to be pulled by microtubules across the spindle in prometaphase. Here we show that MPS1 is not required for kinetochores to attach microtubules but instead is necessary to trigger the migration of microtubule-attached kinetochores towards the poles. Our data support the model that Mps1 triggers depolymerization of microtubule ends once they attach to kinetochores in prometaphase. Thus, Mps1 acts at the kinetochore to co-ordinate the successful attachment of a microtubule and the triggering of microtubule depolymerization to move the chromosome.


Chromosoma ◽  
2020 ◽  
Vol 129 (2) ◽  
pp. 99-110
Author(s):  
Yang Lin ◽  
Ya-Lan Wei ◽  
Zhen-Yu She

2020 ◽  
Vol 30 (7) ◽  
pp. 1207-1216.e4 ◽  
Author(s):  
Chih-Ying Lee ◽  
C. Gaston Bisig ◽  
Michael M. Conrad ◽  
Yanina Ditamo ◽  
Luciana Previato de Almeida ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 1765-1774
Author(s):  
Ahmed Majekodunmi ◽  
Amelia O. Bowen ◽  
William D. Gilliland

The physical connections established by recombination are normally sufficient to ensure proper chromosome segregation during female Meiosis I. However, nonexchange chromosomes (such as the Muller F element or “dot” chromosome in D. melanogaster) can still segregate accurately because they remain connected by heterochromatic tethers. A recent study examined female meiosis in the closely related species D. melanogaster and D. simulans, and found a nearly twofold difference in the mean distance the obligately nonexchange dot chromosomes were separated during Prometaphase. That study proposed two speculative hypotheses for this difference, the first being the amount of heterochromatin in each species, and the second being the species’ differing tolerance for common inversions in natural populations. We tested these hypotheses by examining female meiosis in 12 additional Drosophila species. While neither hypothesis had significant support, we did see 10-fold variation in dot chromosome sizes, and fivefold variation in the frequency of chromosomes out on the spindle, which were both significantly correlated with chromosome separation distances. In addition to demonstrating that heterochromatin abundance changes chromosome behavior, this implies that the duration of Prometaphase chromosome movements must be proportional to the size of the F element in these species. Additionally, we examined D. willistoni, a species that lacks a free dot chromosome. We observed that chromosomes still moved out on the meiotic spindle, and the F element was always positioned closest to the spindle poles. This result is consistent with models where one role of the dot chromosomes is to help organize the meiotic spindle.


Sign in / Sign up

Export Citation Format

Share Document