recombinant dna
Recently Published Documents


TOTAL DOCUMENTS

2909
(FIVE YEARS 181)

H-INDEX

78
(FIVE YEARS 5)

2021 ◽  
Vol 16 (4) ◽  
pp. 203
Author(s):  
Debie Rizqoh

Vaccine becomes a very effective strategy to deal with various infectious diseases even to the point of eradication as in the smalpox virus. At present many conventional vaccines such as inactivated and live-attenuated vaccines. However, these vaccine methods have side effects on the population. Viral-like particle (VLP) is an alternative vaccine based on recombinant DNA technology that is safe with the same immunogenicity as conventional viruses. This vaccine has been shown to induce humoral immune responses mediated by antibodies and cellular immune responses mediated by cytotoxic T cells. With these advantages, currently various types of vaccines have only been developed on a VLP basis. VLP can be produced from a variety of recombinant gene expression systems including bacterial cell expression systems, yeast cells, insect cells, mammalian cells, plant cells, and cell-free systems.


2021 ◽  
Vol 44 (1) ◽  
pp. 1-13
Author(s):  
Angela Di Somma ◽  
Antonio Moretta ◽  
Carolina Cané ◽  
Carmen Scieuzo ◽  
Rosanna Salvia ◽  
...  

Antibiotics are commonly used to treat pathogenic bacteria, but their prolonged use contributes to the development and spread of drug-resistant microorganisms raising the challenge to find new alternative drugs. Antimicrobial peptides (AMPs) are small/medium molecules ranging 10–100 residues synthesized by all living organisms and playing important roles in the defense systems. These features, together with the inability of microorganisms to develop resistance against the majority of AMPs, suggest that these molecules might represent effective alternatives to classical antibiotics. Because of their high biodiversity, with over one million described species, and their ability to live in hostile environments, insects represent the largest source of these molecules. However, production of insect AMPs in native forms is challenging. In this work we investigate a defensin-like antimicrobial peptide identified in the Hermetia illucens insect through a combination of transcriptomics and bioinformatics approaches. The C-15867 AMP was produced by recombinant DNA technology as a glutathione S-transferase (GST) fusion peptide and purified by affinity chromatography. The free peptide was then obtained by thrombin proteolysis and structurally characterized by mass spectrometry and circular dichroism analyses. The antibacterial activity of the C-15867 peptide was evaluated in vivo by determination of the minimum inhibitory concentration (MIC). Finally, crystal violet assays and SEM analyses suggested disruption of the cell membrane architecture and pore formation with leaking of cytosolic material.


PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001426
Author(s):  
Angelika Sturm ◽  
Martijn W. Vos ◽  
Rob Henderson ◽  
Maarten Eldering ◽  
Karin M. J. Koolen ◽  
...  

This work addresses the need for new chemical matter in product development for control of pest insects and vector-borne diseases. We present a barcoding strategy that enables phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and apply this to discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector. Encoding of the blood meals was achieved through recombinant DNA-tagged Asaia bacteria that successfully colonised Aedes and Anopheles mosquitoes. An arrayed screen of a collection of pesticides showed that chemical classes of avermectins, phenylpyrazoles, and neonicotinoids were enriched for compounds with systemic adulticide activity against Anopheles. Using a luminescent Plasmodium falciparum reporter strain, barcoded screens identified 48 drug-like transmission-blocking compounds from a 400-compound antimicrobial library. The approach significantly increases the throughput in phenotypic screening campaigns using adult insects and identifies novel candidate small molecules for disease control.


Author(s):  
Mayur B. Wanjari ◽  
Deeplata Mendhe ◽  
Pratibha Wankhede

Actilyse can break blood clots that form in the heart, blood arteries, or lungs during a heart attack. This medication is also given to stroke patients to improve recovery and reduce the likelihood of impairment. Recombinant DNA technology was used to create Activase, a tissue plasminogen activator. It is a sterile, purified glycoprotein of 527 amino acids. It is made by combining complementary DNA (cDNA) from a human melanoma cell line with the natural human tissue-type plasminogen activator. After reconstitution with Sterile Water for Injection, USP, Activase is a sterile, white to off-white lyophilized powder for intravenous injection.


Author(s):  
Batool Hossein Rashidi ◽  
Khashayar Sayyari ◽  
Ramin Heshmat ◽  
Saeid Amanpour ◽  
Ensieh Shahrokh Tehraninejad ◽  
...  

Background: Advances in recombinant DNA technology led to the development of recombinant follitropin alfa. Recombinant human follicle-stimulating hormone products are used to stimulate follicular maturation. Objective: To compare the efficacy and safety of a biosimilar-candidate recombinant human follicle-stimulating hormone (Cinnal-f® ; CinnaGen, Iran) with the reference product (Gonal-f® ; Merck Serono, Germany) in women undergoing ovarian stimulation for intracytoplasmic sperm injection (ICSI). Materials and Methods: In this randomized controlled trial, a total sample size of 200 women (age < 35 yr, candidate for ICSI) was calculated. Participants began a pituitary downregulation protocol with buserelin. They received 150 IU daily of either Cinnal-f® or Gonal-f® from the second day of their cycle. The primary outcome of the study was the percentage of metaphase II (MII) oocytes. The secondary outcomes included the number and quality of oocytes retrieved, duration of stimulation, fertilization rate, embryo quality, the number of clinical and ongoing pregnancies, and the incidence of ovarian hyperstimulation syndrome (as an important safety marker). Results: A total of 208 women were enrolled, of whom, 200 completed the study period. Ovarian stimulation with Cinnal-f® resulted in a comparable percentage of MII oocytes as with Gonal-f® (78.64% vs 80.02%, respectively; p = 0.81). No statistically significant difference was seen in the secondary outcomes between the groups. Conclusion: Cinnal-f® proved non-inferior to Gonal-f® , based on the percentage of MII oocytes in women aged < 35 yr undergoing ICSI. Our findings confirm that the efficacy and safety profiles of Cinnal-f® and Gonal-f® are similar. Key words: Follitropin alfa, Biosimilar, Efficacy, Safety, Intracytoplasmic sperm injection.


2021 ◽  
pp. 193229682110595
Author(s):  
Lutz Heinemann ◽  
Trung Nguyen ◽  
Timothy S. Bailey ◽  
Ahmed Hassoun ◽  
Bernd Kulzer ◽  
...  

Innovations in syringe and pen needle (PN) technology over the last 100 years have led to important advances in insulin delivery for people with diabetes, paralleling the strides made in developing recombinant DNA human insulin and insulin analogs with varying onset and duration of action. In this review, the history of advances in insulin delivery is described, focusing on progress in syringe, needle, and PN technologies. The early glass and metal syringes that required sterilization by boiling have been replaced by disposable, single-use syringes or pens with clear labeling for precise insulin dosing. The early needles ranging in length from 19 to 26 mm that required manual sharpening against a whetstone have been replaced by syringe needles of 6 mm and PNs of 4 mm in length as slender as 34 gauge. Imaging studies using ultrasound and computed tomography measured the thickness of skin and subcutaneous tissue layers to show feasibility of targeted insulin administration with shorter needles. These developments, coupled with innovations in needle/PN wall and tip structure, have led to improved injection experience for people with diabetes. It is also important to acknowledge the role of injection technique education, together with these advances in injection technology, for improving clinical outcomes and patient satisfaction. With continued projected growth of diabetes prevalence, particularly in developing countries where expensive and complex insulin delivery systems may not be practical, insulin syringes and pens will continue to serve as reliable and cost-effective means of insulin delivery for people with diabetes.


2021 ◽  
Author(s):  
◽  
Grace Laura Paske

<p>Introduced species, such as Rattus norvegicus and Rattus rattus,have contributed to the extinction of many native animals and plants in New Zealand(NZ). Current strategies exist to monitor, manage and eradicate pest species. However, these haven’t always been completely successful and tools to detect small or invading densities remain to be developed. One possible new method to address this problem is the application of chemical attractants (lures). Recently, a major urinary protein (MUP) has been shown in male miceto act as a sexual attractant. MUPs modulate the release of volatile attractants and have potential to act as attractants themselves. Our aim was to determine if a similar MUP(s) and associated volatiles are present in the urine of rats, with the prospect of creating a chemical lure to use in rat detection and eradication. Using Gas Chromatography/Mass Spectrometry, potential volatiles in rat urine have been identified. Analysis of rat urine by gel electrophoresis has shown MUPs present in both sexes. A 22.4 kDa MUP in Rattus norvegicushas been synthesised and expressed in E.coliusing recombinant DNA technology. Preliminary steps have been made towards the production of a MUP based on ship rat DNA sequence. Future behavioral trials are needed to investigate whether the synthesised protein, in the presence or absence of the urinary-derived volatiles, is a sexual attractant.</p>


2021 ◽  
Author(s):  
◽  
Grace Laura Paske

<p>Introduced species, such as Rattus norvegicus and Rattus rattus,have contributed to the extinction of many native animals and plants in New Zealand(NZ). Current strategies exist to monitor, manage and eradicate pest species. However, these haven’t always been completely successful and tools to detect small or invading densities remain to be developed. One possible new method to address this problem is the application of chemical attractants (lures). Recently, a major urinary protein (MUP) has been shown in male miceto act as a sexual attractant. MUPs modulate the release of volatile attractants and have potential to act as attractants themselves. Our aim was to determine if a similar MUP(s) and associated volatiles are present in the urine of rats, with the prospect of creating a chemical lure to use in rat detection and eradication. Using Gas Chromatography/Mass Spectrometry, potential volatiles in rat urine have been identified. Analysis of rat urine by gel electrophoresis has shown MUPs present in both sexes. A 22.4 kDa MUP in Rattus norvegicushas been synthesised and expressed in E.coliusing recombinant DNA technology. Preliminary steps have been made towards the production of a MUP based on ship rat DNA sequence. Future behavioral trials are needed to investigate whether the synthesised protein, in the presence or absence of the urinary-derived volatiles, is a sexual attractant.</p>


Sign in / Sign up

Export Citation Format

Share Document