in vitro mutagenesis
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 33)

H-INDEX

46
(FIVE YEARS 2)

2022 ◽  
Vol 28 (1) ◽  
Author(s):  
María Isabel López-Martínez ◽  
◽  
Alejandrina Robledo-Paz ◽  
Luis Antonio Flores-Hernández ◽  
Tarsicio Corona-Torres ◽  
...  

Developing new varieties of anthurium by hybridization can take 8-10 years; therefore, induced mutagenesis can be an alternative strategy to hybridization. The objective of this work was to induce mutations in A. andreanum by exposing explants obtained from vitroplants to colchicine. Explants of leaves, nodes and roots obtained from vitroplants were exposed to 0.1 % colchicine for 0, 2, 3 and 4 h. The mean lethal dose (LD50), survival, number of explants that generated callus, number of explants that formed shoots and the number of shoots per explant were evaluated. The karyotype of the presumed mutated regenerated plants was determined by the root apex squash technique. The leaves showed the highest sensitivity to cochicine. The survival of the root explants treated with colchicine was 100 %; 4 % of roots exposed for 2 and 3 h formed adventitious shoots (120 shoots). For nodes, the LD50 was found at 3.98 h; 76 and 56 % of the nodes cultivated for 2 and 3 h with colchicine formed adventitious shoots (4.4 and 3.6 shoots). The plants regenerated from the explants exposed to colchicine showed morphological changes. The chromosomal number of the regenerated vitroplants from the explants exposed for 2 and 3 h to colchicine was 2n = 29, while that of those obtained from the explants that remained on the colchicine for 4 h was 2n = 31. The sensitivity to colchicine was a function of the type of explant and the dose used. Colchicine caused the loss (monosomy) or gain of chromosomes (trisomy).


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2971
Author(s):  
Tatsuji Hataya ◽  
Takashi Naoi

Infectious dimeric RNA transcripts are a powerful tool for reverse genetic analyses in viroid studies. However, the construction of dimeric cDNA clones is laborious and time consuming, especially in mutational analyses by in vitro mutagenesis. In this study, we developed a system to synthesize a precisely monomeric linear RNA that could be transcribed in vitro directly from the cDNA clones of four viroid species. The cDNA clones were constructed such that RNA transcription was initiated at the guanine nucleotide of a predicted processing and ligation site in the viroid replication process. Although the transcribed RNAs were considered to possess 5′-triphosphate and 3′-hydroxyl termini, the RNA transcripts were infectious even without in vitro modifications. Additionally, infectivity was detected in the monomeric RNA transcripts, in which transcription was initiated at guanine nucleotides distinct from the predicted processing/ligation site. Moreover, monomeric viroid RNAs bearing 5′-monophosphate, 5′-hydroxyl, or 5′-capped termini were found to be infectious. Northern blot analysis of the pooled total RNA of the plants inoculated with the 5′-terminal modified RNA of potato spindle tuber viroid (PSTVd) indicated that maximum PSTVd accumulation occurred in plants with 5′-monophosphate RNA inoculation, followed by the plants with 5′-triphosphate RNA inoculation. Our system for synthesizing an infectious monomeric linear viroid RNA from a cDNA clone will facilitate mutational analyses by in vitro mutagenesis in viroid research.


BioTech ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 18
Author(s):  
Sudheeran Pradeep Kumar ◽  
B.D. Ranjitha Kumari

The present investigation aimed to obtain salt-tolerant Artemisia vulgaris L. to develop a constant form through in vitro mutagenesis with ethyl methane sulphonate (EMS) as the chemical mutagen. NaCl tolerance was evaluated by the ability of the callus to maintain its growth under different concentrations, ranges from (0 mM to 500 mM). However, NaCl salinity concentration at (500 mM) did not show any development of callus, slight shrinking, and brown discoloration taking place over a week. Thus, all the biochemical and antioxidant assays were limited to (0–400 mM) NaCl. On the other hand, selected calluses were treated with 0.5% EMS for 30, 60, and 90 min and further subcultured on basal media fortified with different concentrations of 0–400 mM NaCl separately. Thus, the callus was treated for 60 min and was found to induce the mutation on the callus. The maximum salt-tolerant callus from 400 mM NaCl was regenerated in MS medium fortified with suitable hormones. Biochemical parameters such as chlorophyll, carotenoids, starch, amino acids, and phenol contents decreased under NaCl stress, whereas sugar and proline increased. Peroxidase (POD) and superoxide dismutase (SOD) activities peaked at 200 mM NaCl, whereas catalase (CAT) was maximum at 100 mM NaCl. Enhanced tolerance of 0.5% the EMS-treated callus, attributed to the increased biochemical and antioxidant activity over the control and NaCl stress. As a result, the mutants were more tolerant of salinity than the control plants.


2021 ◽  
Vol 13 (3) ◽  
pp. 10995
Author(s):  
Wei-Seng HO ◽  
Wee-Hiang ENG ◽  
Kwong-Hung LING

Chromosome count is the only direct way to determine the number of chromosomes of a species. This study is often considered trivial that seldom described and discussed in detail. Therefore, it is inevitable that the chromosome count protocol should be revised and revisited before it becomes obliterated. In the present study, we encountered challenges in obtaining a clear micrograph for the chromosome count of active mitotic cells of Neolamarckia cadamba (Roxb.) Bosser (Rubiaceae) root tips. Several obstacles were determined through micrograph observation, such as existing unwanted particles in cells, poor chromosome staining and chromosome clumping. To overcome these, root tip types, staining methodologies, squashing methods were among the factors assessed to obtain clear micrographs. The chromosome counts of N. cadamba under optimized procedure showed 2n = 44 chromosomes. We also apply digital technology in chromosome counts, such as online databases and graphic software that are open source and freely accessible to the public. Only basic laboratory equipment and chemicals were used throughout the study, thus making this study economical and applicable in a basic laboratory. The availability of online digital software and databases provide open-source platforms that will ease the efforts in chromosome count.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1482
Author(s):  
Yakelin Díaz-Tejeda ◽  
Miriam C. Guido-Jiménez ◽  
Helga López-Carbajal ◽  
Alfredo Amador-Molina ◽  
Rocío Méndez-Martínez ◽  
...  

Persistent infections with some types of human papillomavirus (HPV) constitute the major etiological factor for cervical cancer development. Nanog, a stem cell transcription factor has been shown to increase during cancer progression. We wanted to determine whether Nanog could modulate transcription of E6 and E7 oncogenes. We used luciferase reporters under the regulation of the long control region (LCR) of HPV types 16 and 18 (HPV16/18) and performed RT-qPCR. We found that Nanog increases activity of both viral regulatory regions and elevates endogenous E6/E7 mRNA levels in cervical cancer-derived cells. We demonstrated by in vitro mutagenesis that changes at Nanog-binding sites found in the HPV18 LCR significantly inhibit transcriptional activation. Chromatin immunoprecipitation (ChIP) assays showed that Nanog binds in vivo to the HPV18 LCR, and its overexpression increases its binding as well as that of c-Jun. Surprisingly, we observed that mutation of AP1-binding sites also affect Nanog’s ability to activate transcription, suggesting cooperation between the two factors. We searched for putative Nanog-binding sites in the LCR of several HPVs and surprisingly found them only in those types associated with cancer development. Our study shows, for the first time, a role for Nanog in the regulation of E6/E7 transcription of HPV16/18.


Sugar Tech ◽  
2021 ◽  
Author(s):  
S. G. Dalvi ◽  
P. N. Tawar ◽  
P. Suprasanna ◽  
G. B. Dixit ◽  
D. Theertha Prasad

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 433
Author(s):  
Carolina Sánchez-Romero

The olive is a fruit tree species economically very important in countries of the Mediterranean basin. Somatic embryogenesis is a powerful in vitro technique with multiple applications in different fields, including breeding programs performed by both classical and innovative procedures. This editorial paper presents a special issue focused on “Somatic embryogenesis in olive”. In this manuscript, the conceptual framework of the special issue is established and the contributions are summarized and put into context. Finally, the main bottlenecks limiting the practical applicability of somatic embryogenesis are identified and the future research prospects are discussed.


Sign in / Sign up

Export Citation Format

Share Document