Neuroprotective Strategies in Parkinson’s Disease

2009 ◽  
pp. 498-508
Author(s):  
C. Warren Olanow
2020 ◽  
Vol 14 ◽  
Author(s):  
Andrea Mancini ◽  
Petra Mazzocchetti ◽  
Miriam Sciaccaluga ◽  
Alfredo Megaro ◽  
Laura Bellingacci ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1657-1673
Author(s):  
Aliyah Glover ◽  
Lakshmi Pillai ◽  
Shannon Doerhoff ◽  
Tuhin Virmani

Background: Freezing of gait (FOG) is a debilitating feature of Parkinson’s disease (PD) for which treatments are limited. To develop neuroprotective strategies, determining whether disease progression is different in phenotypic variants of PD is essential. Objective: To determine if freezers have a faster decline in spatiotemporal gait parameters. Methods: Subjects were enrolled in a longitudinal study and assessed every 3– 6 months. Continuous gait in the levodopa ON-state was collected using a gait mat (Protokinetics). The slope of change/year in spatiotemporal gait parameters was calculated. Results: 26 freezers, 31 non-freezers, and 25 controls completed an average of 6 visits over 28 months. Freezers had a faster decline in mean stride-length, stride-velocity, swing-%, single-support-%, and variability in single-support-% compared to non-freezers (p < 0.05). Gait decline was not correlated with initial levodopa dose, duration of levodopa therapy, change in levodopa dose or change in Montreal Cognitive Assessment scores (p > 0.25). Gait progression parameters were required to obtain 95% accuracy in categorizing freezers and non-freezers groups in a forward step-wise binary regression model. Change in mean stride-length, mean stride-width, and swing-% variability along with initial foot-length variability, mean swing-% and apathy scores were significant variables in the model. Conclusion: Freezers had a faster temporal decline in objectively quantified gait, and inclusion of longitudinal gait changes in a binary regression model greatly increased categorization accuracy. Levodopa dosing, cognitive decline and disease severity were not significant in our model. Early detection of this differential decline may help define freezing prone groups for testing putative treatments.


2004 ◽  
Vol 25 (5) ◽  
pp. 249-253 ◽  
Author(s):  
Wassilios Meissner ◽  
Michael P. Hill ◽  
François Tison ◽  
Christian E. Gross ◽  
Erwan Bezard

2021 ◽  
pp. 1-8
Author(s):  
Jonathan Sackner-Bernstein

Background: The hallmark of Parkinson’s disease is depletion of dopamine in the basal ganglia. Models of Parkinson’s disease include dopamine as a contributor to disease progression. However, intraneuronal levels of dopamine have not been reported. Objective: Meta-analytic methods were utilized to determine intracellular dopamine levels in Parkinson’s disease. Methods: A systematic review of the literature and frequentist meta-analyses were performed. Dopamine levels were scaled for cell and axon numbers as well as VMAT2 protein levels. Results: Reduced tissue dopamine, dopaminergic cell bodies and VMAT2 protein were confirmed. The ratio of Parkinson’s to normal brain intracellular dopamine scaled for either cell or axon number, each with VMAT2 level in the caudate ranged from 1.49 to 1.87 (p = 0.51 and p = 0.12, respectively) and in the putamen from 0.75 to 4.61 (p = 0.40 and 0.001, respectively). Conclusion: Free, intracellular dopamine levels are not reduced in Parkinson’s disease compared to normals to a similar degree as are total tissue concentrations, supporting the relevance of modulating VMAT2, neuromelanin and/or dopamine synthesis as rational neuroprotective strategies.


Sign in / Sign up

Export Citation Format

Share Document