Reviews in the Neurosciences
Latest Publications


TOTAL DOCUMENTS

1238
(FIVE YEARS 210)

H-INDEX

67
(FIVE YEARS 9)

Published By Walter De Gruyter Gmbh

2191-0200, 0334-1763

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaun Cade ◽  
Xin-Fu Zhou ◽  
Larisa Bobrovskaya

Abstract Alzheimer’s disease is a neurodegenerative condition that is potentially mediated by synaptic dysfunction before the onset of cognitive impairments. The disease mostly affects elderly people and there is currently no therapeutic which halts its progression. One therapeutic strategy for Alzheimer’s disease is to regenerate lost synapses by targeting mechanisms involved in synaptic plasticity. This strategy has led to promising drug candidates in clinical trials, but further progress needs to be made. An unresolved problem of Alzheimer’s disease is to identify the molecular mechanisms that render the aged brain susceptible to synaptic dysfunction. Understanding this susceptibility may identify drug targets which could halt, or even reverse, the disease’s progression. Brain derived neurotrophic factor is a neurotrophin expressed in the brain previously implicated in Alzheimer’s disease due to its involvement in synaptic plasticity. Low levels of the protein increase susceptibility to the disease and post-mortem studies consistently show reductions in its expression. A desirable therapeutic approach for Alzheimer’s disease is to stimulate the expression of brain derived neurotrophic factor and potentially regenerate lost synapses. However, synthesis and secretion of the protein are regulated by complex activity-dependent mechanisms within neurons, which makes this approach challenging. Moreover, the protein is synthesised as a precursor which exerts the opposite effect of its mature form through the neurotrophin receptor p75NTR. This review will evaluate current evidence on how age-related alterations in the synthesis, processing and signalling of brain derived neurotrophic factor may increase the risk of Alzheimer’s disease.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Alla B. Salmina ◽  
Natalia A. Malinovskaya ◽  
Andrey V. Morgun ◽  
Elena D. Khilazheva ◽  
Yulia A. Uspenskaya ◽  
...  

Abstract The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood–brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Yang Bai ◽  
Song Han ◽  
Jing-Yu Guan ◽  
Jun Lin ◽  
Ming-Guang Zhao ◽  
...  

Abstract The previous three decades have witnessed a prosperity of contralateral C7 nerve (CC7) transfer in the treatment of upper-extremity paralysis induced by both brachial plexus avulsion injury and central hemiplegia. From the initial subcutaneous route to the pre-spinal route and the newly-established post-spinal route, this surgical operation underwent a series of innovations and refinements, with the aim of shortening the regeneration distance and even achieving direct neurorrhaphy. Apart from surgical efforts for better peripheral nerve regeneration, brain involvement in functional improvements after CC7 transfer also stimulated scientific interest. This review summarizes recent advances of CC7 transfer in the treatment of upper-extremity paralysis of both peripheral and central causes, which covers the neuroanatomical basis, the evolution of surgical approach, and central mechanisms. In addition, motor cortex stimulation is discussed as a viable rehabilitation treatment in boosting functional recovery after CC7 transfer. This knowledge will be beneficial towards improving clinical effects of CC7 transfer.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Benjamin Drukarch ◽  
Micha M. M. Wilhelmus ◽  
Shamit Shrivastava

Abstract The thermodynamic theory of action potential propagation challenges the conventional understanding of the nerve signal as an exclusively electrical phenomenon. Often misunderstood as to its basic tenets and predictions, the thermodynamic theory is virtually ignored in mainstream neuroscience. Addressing a broad audience of neuroscientists, we here attempt to stimulate interest in the theory. We do this by providing a concise overview of its background, discussion of its intimate connection to Albert Einstein’s treatment of the thermodynamics of interfaces and outlining its potential contribution to the building of a physical brain theory firmly grounded in first principles and the biophysical reality of individual nerve cells. As such, the paper does not attempt to advocate the superiority of the thermodynamic theory over any other approach to model the nerve impulse, but is meant as an open invitation to the neuroscience community to experimentally test the assumptions and predictions of the theory on their validity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abigail L. Kerr

Abstract Stroke is a leading cause of death and disability worldwide. A common, chronic deficit after stroke is upper limb impairment, which can be exacerbated by compensatory use of the nonparetic limb. Resulting in learned nonuse of the paretic limb, compensatory reliance on the nonparetic limb can be discouraged with constraint-induced movement therapy (CIMT). CIMT is a rehabilitative strategy that may promote functional recovery of the paretic limb in both acute and chronic stroke patients through intensive practice of the paretic limb combined with binding, or otherwise preventing activation of, the nonparetic limb during daily living exercises. The neural mechanisms that support CIMT have been described in the lesioned hemisphere, but there is a less thorough understanding of the contralesional changes that support improved functional outcome following CIMT. Using both human and non-human animal studies, the current review explores the role of the contralesional hemisphere in functional recovery of stroke as it relates to CIMT. Current findings point to a need for a better understanding of the functional significance of contralesional changes, which may be determined by lesion size, location, and severity as well stroke chronicity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanhong Song ◽  
Ziyi Wu ◽  
Ping Zhao

Abstract Sirt1, a member of the sirtuins family, is a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase. It can be involved in the regulation of several processes including inflammatory response, apoptosis, oxidative stress, energy metabolism, and autophagy by exerting deacetylation. Nuclear factor-κB (NF-κB), a crucial nuclear transcription factor with specific DNA binding sequences, exists in almost all cells and plays a vital role in several biological processes involving inflammatory response, immune response, and apoptosis. As the hub of multiple intracellular signaling pathways, the activity of NF-κB is regulated by multiple factors. Sirt1 can both directly deacetylate NF-κB and indirectly through other molecules to inhibit its activity. We would like to emphasize that Sirt1/NF-κB is a signaling pathway that is closely related to neuroinflammation. Many recent studies have demonstrated the neuroprotective effects of Sirt1/NF-κB signaling pathway activation applied to the treatment of neurological related diseases. In this review, we focus on new advances in the neuroprotective effects of the Sirt1/NF-κB pathway. First, we briefly review Sirt1 and NF-κB, two key molecules of cellular metabolism. Next, we discuss the connection between NF-κB and neuroinflammation. In addition, we explore how Sirt1 regulates NF-κB in nerve cells and relevant evidence. Finally, we analyze the therapeutic effects of the Sirt1/NF-κB pathway in several common neuroinflammation-related diseases.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robin Visvanathar ◽  
Maria Papanikolaou ◽  
Diana Aline Nôga ◽  
Marina Pádua-Reis ◽  
Adriano Bretanha Lopes Tort ◽  
...  

Abstract The field of cannabinoid research has been receiving ever-growing interest. Ongoing debates worldwide about the legislation of medical cannabis further motivates research into cannabinoid function within the central nervous system (CNS). To date, two well-characterized cannabinoid receptors exist. While most research has investigated Cb1 receptors (Cb1Rs), Cb2 receptors (Cb2Rs) in the brain have started to attract considerable interest in recent years. With indisputable evidence showing the wide-distribution of Cb2Rs in the brain of different species, they are no longer considered just peripheral receptors. However, in contrast to Cb1Rs, the functionality of central Cb2Rs remains largely unexplored. Here we review recent studies on hippocampal Cb2Rs. While conflicting results about their function have been reported, we have made significant progress in understanding the involvement of Cb2Rs in modulating cellular properties and network excitability. Moreover, Cb2Rs have been shown to be expressed in different subregions of the hippocampus, challenging our prior understanding of the endocannabinoid system. Although more insight into their functional roles is necessary, we propose that targeting hippocampal Cb2Rs may offer novel therapies for diseases related to memory and adult neurogenesis deficits.


Sign in / Sign up

Export Citation Format

Share Document