synaptic dysfunction
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 178)

H-INDEX

52
(FIVE YEARS 9)

2022 ◽  
Vol 23 (2) ◽  
pp. 592
Author(s):  
Brigitte Potier ◽  
Louison Lallemant ◽  
Sandrine Parrot ◽  
Aline Huguet-Lachon ◽  
Geneviève Gourdon ◽  
...  

Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaun Cade ◽  
Xin-Fu Zhou ◽  
Larisa Bobrovskaya

Abstract Alzheimer’s disease is a neurodegenerative condition that is potentially mediated by synaptic dysfunction before the onset of cognitive impairments. The disease mostly affects elderly people and there is currently no therapeutic which halts its progression. One therapeutic strategy for Alzheimer’s disease is to regenerate lost synapses by targeting mechanisms involved in synaptic plasticity. This strategy has led to promising drug candidates in clinical trials, but further progress needs to be made. An unresolved problem of Alzheimer’s disease is to identify the molecular mechanisms that render the aged brain susceptible to synaptic dysfunction. Understanding this susceptibility may identify drug targets which could halt, or even reverse, the disease’s progression. Brain derived neurotrophic factor is a neurotrophin expressed in the brain previously implicated in Alzheimer’s disease due to its involvement in synaptic plasticity. Low levels of the protein increase susceptibility to the disease and post-mortem studies consistently show reductions in its expression. A desirable therapeutic approach for Alzheimer’s disease is to stimulate the expression of brain derived neurotrophic factor and potentially regenerate lost synapses. However, synthesis and secretion of the protein are regulated by complex activity-dependent mechanisms within neurons, which makes this approach challenging. Moreover, the protein is synthesised as a precursor which exerts the opposite effect of its mature form through the neurotrophin receptor p75NTR. This review will evaluate current evidence on how age-related alterations in the synthesis, processing and signalling of brain derived neurotrophic factor may increase the risk of Alzheimer’s disease.


2022 ◽  
pp. 417-438
Author(s):  
Silvia Pelucchi ◽  
Fabrizio Gardoni ◽  
Monica Di Luca ◽  
Elena Marcello

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhao-Hui Chen ◽  
Yuan-Yuan Han ◽  
Ying-Jie Shang ◽  
Si-Yi Zhuang ◽  
Jun-Ni Huang ◽  
...  

Cordycepin exerted significant neuroprotective effects and protected against cerebral ischemic damage. Learning and memory impairments after cerebral ischemia are common. Cordycepin has been proved to improve memory impairments induced by cerebral ischemia, but its underlying mechanism has not been revealed yet. The plasticity of synaptic structure and function is considered to be one of the neural mechanisms of learning and memory. Therefore, we investigated how cordycepin benefits dendritic morphology and synaptic transmission after cerebral ischemia and traced the related molecular mechanisms. The effects of cordycepin on the protection against ischemia were studied by using global cerebral ischemia (GCI) and oxygen-glucose deprivation (OGD) models. Behavioral long-term potentiation (LTP) and synaptic transmission were observed with electrophysiological recordings. The dendritic morphology and histological assessment were assessed by Golgi staining and hematoxylin-eosin (HE) staining, respectively. Adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR) were evaluated with western blotting. The results showed that cordycepin reduced the GCI-induced dendritic morphology scathing and behavioral LTP impairment in the hippocampal CA1 area, improved the learning and memory abilities, and up-regulated the level of A1R but not A2AR. In the in vitro experiments, cordycepin pre-perfusion could alleviate the hippocampal slices injury and synaptic transmission cripple induced by OGD, accompanied by increased adenosine content. In addition, the protective effect of cordycepin on OGD-induced synaptic transmission damage was eliminated by using an A1R antagonist instead of A2AR. These findings revealed that cordycepin alleviated synaptic dysfunction and dendritic injury in ischemic models by modulating A1R, which provides new insights into the pharmacological mechanisms of cordycepin for ameliorating cognitive impairment induced by cerebral ischemia.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2339
Author(s):  
Luisa Agnello ◽  
Bruna Lo Sasso ◽  
Matteo Vidali ◽  
Concetta Scazzone ◽  
Tommaso Piccoli ◽  
...  

(1) Background: Neurogranin is a post-synaptic protein expressed in the neurons of the hippocampus and cerebral cortex. It has been recently proposed as a promising biomarker of synaptic dysfunction, especially in Alzheimer’s disease (AD). However, more efforts are needed before introducing it in clinical practice, including the definition of its reference interval (RI). The aim of the study was to establish the RI of cerebrospinal fluid (CSF) neurogranin levels in controls and individuals with non-neurodegenerative neurological diseases; (2) We included a total of 136 individuals that were sub-grouped as follows: AD patients (n = 33), patients with non-neurodegenerative neurological diseases (n = 70) and controls (33). We measured CSF neurogranin levels by a commercial ELISA kit. CSF RI of neurogranin was calculated by a robust method; (3) Results: AD patients showed increased levels of neurogranin. We also found that neurogranin was significantly correlated with T-tau, P-tau and mini mental state examination in AD patients. The lower and upper reference limits of the RI were 2.9 (90%CI 0.1–10.8) and 679 (90%CI 595–779), respectively; (4) Conclusion: This is the first study establishing the RI of CSF neurogranin.


2021 ◽  
Author(s):  
Xiaotang Ma ◽  
Yan Wang ◽  
Yumeng Shi ◽  
Suqing Li ◽  
Jinhua Liu ◽  
...  

Abstract Background/Aims: Vascular dementia (VD) results in cognition and memory deficit. Exosomes and their carried microRNAs (miRs) contribute to the neuroprotective effects of mesenchymal stromal cells, and miR-132-3p plays a key role in neuron plasticity. Here we investigated the role and underlying mechanism of MSC EX and their miR-132-3p cargo in rescuing cognition and memory deficit in VD mice. Methods: Bilateral carotid artery occlusion was used to generate a VD mouse model. MiR-132-3p and MSC EX levels in the hippocampus and cortex were measured. At 24 h post-VD induction, mice were administered with MSC EX infected with control lentivirus (EXCon), pre-miR-132-3p-expressing lentivirus (EXmiR−132−3p), or miR-132-3p antago lentivirus (EXantagomiR−132−3p) intravenously. Behavioral and cognitive tests were performed and the mice were sacrificed in 21 days after VD. The effects of MSC EX on neuron number, synaptic plasticity, dendritic spine density, and Aβ and p-Tau levels in the hippocampus and cortex were determined. The effects of MSC EX on oxygen-glucose deprivation (OGD)-injured neurons with respect to apoptosis, and neurite elongation and branching were determined. Finally, the expression levels of Ras, phosphorylation of Akt, GSK-3β, and Tau were also measured. Results: Compared with normal mice, VD mice exhibited significantly decreased miR-132-3p and MSC EX levels in the cortex and hippocampus. Compared with EXCon treatment, the infusion of EXmiR−132−3p was more effective at improving cognitive function and increasing miR-132-3p level, neuron number, synaptic plasticity, and dendritic spine density, while decreasing Aβ and p-Tau levels in the cortex and hippocampus of VD mice. Conversely, EXantagomiR−132−3p treatment significantly decreased miR-132-3p expression in cortex and hippocampus, as well as attenuated EXmiR−132−3p treatment-induced functional improvement. In vitro, EXmiR−132−3p treatment inhibited RASA1 protein expression, but increased Ras and the phosphorylation of Akt and GSK-3β, and decreased p-Tau levels in primary neurons by delivering miR-132-3p, which resulted in reduced apoptosis, and increased neurite elongation and branching in OGD-injured neurons. Conclusions: Our studies suggest that miR-132-3p cluster-enriched MSC EX promotes the recovery of cognitive function by improving neuronal and synaptic dysfunction through activation of the Ras/Akt/GSK-3β pathway induced by downregulation of RASA1.


2021 ◽  
Author(s):  
Zhuochen Lyu ◽  
Shiyuan Luo ◽  
Yinjiao Li ◽  
Liangfang Yao ◽  
Feng Chen ◽  
...  

Abstract Background: Sepsis-associated encephalopathy (SAE) is one of the severe central nervous system complications. Oxidative stress and synaptic dysfunction were involved in cognitive impairment induced by SAE. The mitochondrial nicotinamide adenine dinucleotide (NAD+) dependent deacetylase, sirtuin3 (SIRT3), plays a critical role in regulating mitochondrial function. The aim of this study was to evaluate the effect of SIRT3 in cognitive dysfunction induced by SAE.Methods: Mice were treated with lipopolysaccharide (LPS, 10 mg/kg, i.p.). Contextual and cue memory were evaluated by fear conditioning test in wild-type (WT) and SIRT3-deficient (SIRT3-/-) mice. Synapse-associated proteins and mitochondrial apoptosis-associated protein were examined by western blotting. In vitro studies, acetylation levels of cyclophilin D (CypD) were detected with different SIRT3 deacetylase activity in HT22 cells after LPS-induced microglia supernatant (Mi-sup) exposure. Oxidative stress was detected by reactive oxygen species (ROS) staining, and mitochondrial membrane potential (MMP) was detected by JC-1 staining, and mitochondrial membrane permeability transition pore (MPTP) opening was detected by Calcein and Co2+ staining. Furthermore, the phosphorylation levels of mitochondrial p66Shc and JNK were evaluated by western blotting.Results: SIRT3 expression was diminished in hippocampus of mice after LPS treatment. SIRT3-deficiency contributed to more severe contextual memory loss and synaptic dysfunction, decreased ratio of Bcl-2/Bax and increased Cyt C release to cytoplasm in hippocampus compared with wild-type controls. In HT22 cells, lysine acetylation levels of CypD were significantly increased after Mi-sup exposure and further enhanced with 3-TYP (SIRT3 deacetylation inhibitor) pretreatment, in association with the accumulation of ROS, declined MMP and increased MPTP opening, as well as the increased mitochondrial Cyt C release and phosphorylation levels of mitochondrial JNK and p66Shc-Ser36. SIRT3 overexpression restored CypD lysine acetylation levels and MPTP opening in HT22 cells after Mi-sup exposure and reduced mitochondrial JNK and p66Shc activation. Conclusions: Taken together, our results showed that SIRT3-mediated CypD deacetylation was involved in LPS-induced hippocampal synaptic dysfunction, via ROS accumulation, declined MMP, increased MPTP opening, mitochondrial Cyt C release and mitochondrial apoptosis of hippocampal neuron via JNK/p66Shc pathway. Our results revealed that SIRT3 may be a promising therapeutic and diagnostic target for cognitive dysfunction induced by SAE.


2021 ◽  
Vol 17 (S5) ◽  
Author(s):  
Johanna Nilsson ◽  
Katheryn A.Q. Cousins ◽  
Johan Gobom ◽  
Erik Portelius ◽  
Alice Chen‐Plotkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document