scholarly journals Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities

AoB Plants ◽  
2015 ◽  
Vol 7 ◽  
pp. plv050 ◽  
Author(s):  
Monika A. Gorzelak ◽  
Amanda K. Asay ◽  
Brian J. Pickles ◽  
Suzanne W. Simard
2002 ◽  
Vol 357 (1421) ◽  
pp. 683-695 ◽  
Author(s):  
Timothy M. Lenton ◽  
Marcel van Oijen

We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self–organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large–scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary–scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self–regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self–organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life (‘Alife’) techniques may enable more comprehensive feasibility tests of Gaia.


2014 ◽  
Vol 281 (1776) ◽  
pp. 20132437 ◽  
Author(s):  
Zhiyuan Song ◽  
Marcus W. Feldman

Although pollinators can play a central role in determining the structure and stability of plant communities, little is known about how their adaptive foraging behaviours at the individual level, e.g. flower constancy, structure these interactions. Here, we construct a mathematical model that integrates individual adaptive foraging behaviour and population dynamics of a community consisting of two plant species and a pollinator species. We find that adaptive foraging at the individual level, as a complementary mechanism to adaptive foraging at the species level, can further enhance the coexistence of plant species through niche partitioning between conspecific pollinators. The stabilizing effect is stronger than that of unbiased generalists when there is also strong competition between plant species over other resources, but less so than that of multiple specialist species. This suggests that adaptive foraging in mutualistic interactions can have a very different impact on the plant community structure from that in predator–prey interactions. In addition, the adaptive behaviour of individual pollinators may cause a sharp regime shift for invading plant species. These results indicate the importance of integrating individual adaptive behaviour and population dynamics for the conservation of native plant communities.


1994 ◽  
Vol 105 (5-6) ◽  
pp. 387-398
Author(s):  
M. M. Abd El-Ghani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document