Unsupervised and self-supervised deep learning approaches for biomedical text mining

Author(s):  
Mohamed Nadif ◽  
François Role

Abstract Biomedical scientific literature is growing at a very rapid pace, which makes increasingly difficult for human experts to spot the most relevant results hidden in the papers. Automatized information extraction tools based on text mining techniques are therefore needed to assist them in this task. In the last few years, deep neural networks-based techniques have significantly contributed to advance the state-of-the-art in this research area. Although the contribution to this progress made by supervised methods is relatively well-known, this is less so for other kinds of learning, namely unsupervised and self-supervised learning. Unsupervised learning is a kind of learning that does not require the cost of creating labels, which is very useful in the exploratory stages of a biomedical study where agile techniques are needed to rapidly explore many paths. In particular, clustering techniques applied to biomedical text mining allow to gather large sets of documents into more manageable groups. Deep learning techniques have allowed to produce new clustering-friendly representations of the data. On the other hand, self-supervised learning is a kind of supervised learning where the labels do not have to be manually created by humans, but are automatically derived from relations found in the input texts. In combination with innovative network architectures (e.g. transformer-based architectures), self-supervised techniques have allowed to design increasingly effective vector-based word representations (word embeddings). We show in this survey how word representations obtained in this way have proven to successfully interact with common supervised modules (e.g. classification networks) to whose performance they greatly contribute.

BioChem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 60-80
Author(s):  
Nícia Rosário-Ferreira ◽  
Catarina Marques-Pereira ◽  
Manuel Pires ◽  
Daniel Ramalhão ◽  
Nádia Pereira ◽  
...  

Text mining (TM) is a semi-automatized, multi-step process, able to turn unstructured into structured data. TM relevance has increased upon machine learning (ML) and deep learning (DL) algorithms’ application in its various steps. When applied to biomedical literature, text mining is named biomedical text mining and its specificity lies in both the type of analyzed documents and the language and concepts retrieved. The array of documents that can be used ranges from scientific literature to patents or clinical data, and the biomedical concepts often include, despite not being limited to genes, proteins, drugs, and diseases. This review aims to gather the leading tools for biomedical TM, summarily describing and systematizing them. We also surveyed several resources to compile the most valuable ones for each category.


Technologies ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Ashish Jaiswal ◽  
Ashwin Ramesh Babu ◽  
Mohammad Zaki Zadeh ◽  
Debapriya Banerjee ◽  
Fillia Makedon

Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets. It is capable of adopting self-defined pseudolabels as supervision and use the learned representations for several downstream tasks. Specifically, contrastive learning has recently become a dominant component in self-supervised learning for computer vision, natural language processing (NLP), and other domains. It aims at embedding augmented versions of the same sample close to each other while trying to push away embeddings from different samples. This paper provides an extensive review of self-supervised methods that follow the contrastive approach. The work explains commonly used pretext tasks in a contrastive learning setup, followed by different architectures that have been proposed so far. Next, we present a performance comparison of different methods for multiple downstream tasks such as image classification, object detection, and action recognition. Finally, we conclude with the limitations of the current methods and the need for further techniques and future directions to make meaningful progress.


2009 ◽  
Vol 5 (12) ◽  
pp. e1000597 ◽  
Author(s):  
Raul Rodriguez-Esteban

Molecules ◽  
2018 ◽  
Vol 23 (5) ◽  
pp. 1028 ◽  
Author(s):  
Yuting Xing ◽  
Chengkun Wu ◽  
Xi Yang ◽  
Wei Wang ◽  
En Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document