scholarly journals OPUS-TASS: a protein backbone torsion angles and secondary structure predictor based on ensemble neural networks

2020 ◽  
Vol 36 (20) ◽  
pp. 5021-5026 ◽  
Author(s):  
Gang Xu ◽  
Qinghua Wang ◽  
Jianpeng Ma

Abstract Motivation Predictions of protein backbone torsion angles (ϕ and ψ) and secondary structure from sequence are crucial subproblems in protein structure prediction. With the development of deep learning approaches, their accuracies have been significantly improved. To capture the long-range interactions, most studies integrate bidirectional recurrent neural networks into their models. In this study, we introduce and modify a recently proposed architecture named Transformer to capture the interactions between the two residues theoretically with arbitrary distance. Moreover, we take advantage of multitask learning to improve the generalization of neural network by introducing related tasks into the training process. Similar to many previous studies, OPUS-TASS uses an ensemble of models and achieves better results. Results OPUS-TASS uses the same training and validation sets as SPOT-1D. We compare the performance of OPUS-TASS and SPOT-1D on TEST2016 (1213 proteins) and TEST2018 (250 proteins) proposed in the SPOT-1D paper, CASP12 (55 proteins), CASP13 (32 proteins) and CASP-FM (56 proteins) proposed in the SAINT paper, and a recently released PDB structure collection from CAMEO (93 proteins) named as CAMEO93. On these six test sets, OPUS-TASS achieves consistent improvements in both backbone torsion angles prediction and secondary structure prediction. On CAMEO93, SPOT-1D achieves the mean absolute errors of 16.89 and 23.02 for ϕ and ψ predictions, respectively, and the accuracies for 3- and 8-state secondary structure predictions are 87.72 and 77.15%, respectively. In comparison, OPUS-TASS achieves 16.56 and 22.56 for ϕ and ψ predictions, and 89.06 and 78.87% for 3- and 8-state secondary structure predictions, respectively. In particular, after using our torsion angles refinement method OPUS-Refine as the post-processing procedure for OPUS-TASS, the mean absolute errors for final ϕ and ψ predictions are further decreased to 16.28 and 21.98, respectively. Availability and implementation The training and the inference codes of OPUS-TASS and its data are available at https://github.com/thuxugang/opus_tass. Supplementary information Supplementary data are available at Bioinformatics online.

2009 ◽  
Vol 217 (2) ◽  
pp. 145-150 ◽  
Author(s):  
Seyed Amir Malekpour ◽  
Sima Naghizadeh ◽  
Hamid Pezeshk ◽  
Mehdi Sadeghi ◽  
Changiz Eslahchi

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 84362-84370
Author(s):  
Shusen Zhou ◽  
Hailin Zou ◽  
Chanjuan Liu ◽  
Mujun Zang ◽  
Tong Liu

Author(s):  
Fabian Sievers ◽  
Desmond G Higgins

Abstract Motivation Secondary structure prediction accuracy (SSPA) in the QuanTest benchmark can be used to measure accuracy of a multiple sequence alignment. SSPA correlates well with the sum-of-pairs score, if the results are averaged over many alignments but not on an alignment-by-alignment basis. This is due to a sub-optimal selection of reference and non-reference sequences in QuanTest. Results We develop an improved strategy for selecting reference and non-reference sequences for a new benchmark, QuanTest2. In QuanTest2, SSPA and SP correlate better on an alignment-by-alignment basis than in QuanTest. Guide-trees for QuanTest2 are more balanced with respect to reference sequences than in QuanTest. QuanTest2 scores correlate well with other well-established benchmarks. Availability and implementation QuanTest2 is available at http://bioinf.ucd.ie/quantest2.tar, comprises of reference and non-reference sequence sets and a scoring script. Supplementary information Supplementary data are available at Bioinformatics online


Sign in / Sign up

Export Citation Format

Share Document