scholarly journals FOLD-EM: automated fold recognition in medium- and low-resolution (4–15 Å) electron density maps

2012 ◽  
Vol 28 (24) ◽  
pp. 3265-3273 ◽  
Author(s):  
Mitul Saha ◽  
Marc C. Morais
2010 ◽  
Vol 66 (3) ◽  
pp. 268-275 ◽  
Author(s):  
Thomas C. Terwilliger

A method for the identification of α-helices in electron-density maps at low resolution followed by interpretation at moderate to high resolution is presented. Rapid identification is achieved at low resolution, where α-helices appear as tubes of density. The positioning and direction of the α-helices is obtained at moderate to high resolution, where the positions of side chains can be seen. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 Å. An average of 63% of the α-helical residues in these proteins were built and an average of 76% of the residues built matched helical residues in the refined models of the proteins. The overall average r.m.s.d. between main-chain atoms in the modeled α-helices and the nearest atom with the same name in the refined models of the proteins was 1.3 Å.


2018 ◽  
Vol 74 (6) ◽  
pp. 519-530 ◽  
Author(s):  
Tristan Ian Croll

This paper introducesISOLDE, a new software package designed to provide an intuitive environment for high-fidelity interactive remodelling/refinement of macromolecular models into electron-density maps.ISOLDEcombines interactive molecular-dynamics flexible fitting with modern molecular-graphics visualization and established structural biology libraries to provide an immersive interface wherein the model constantly acts to maintain physically realistic conformations as the user interacts with it by directly tugging atoms with a mouse or haptic interface or applying/removing restraints. In addition, common validation tasks are accelerated and visualized in real time. Using the recently described 3.8 Å resolution cryo-EM structure of the eukaryotic minichromosome maintenance (MCM) helicase complex as a case study, it is demonstrated howISOLDEcan be used alongside other modern refinement tools to avoid common pitfalls of low-resolution modelling and improve the quality of the final model. A detailed analysis of changes between the initial and final model provides a somewhat sobering insight into the dangers of relying on a small number of validation metrics to judge the quality of a low-resolution model.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 739-749 ◽  
Author(s):  
F. Schlünzen ◽  
H. A. S. Hansen ◽  
J. Thygesen ◽  
W. S. Bennett ◽  
N. Volkmann ◽  
...  

Preliminary electron density maps of the large and the small ribosomal particles from halophilic and thermophilic sources, phased by the isomorphous replacement method, have been constructed at intermediate resolution. These maps contain features comparable in size with what is expected for the corresponding particles, and their packing arrangements are in accord with the schemes obtained by ab-initio procedures as well as with the motifs observed in thin sections of the crystals by electron microscopy. To phase higher resolution data, procedures are being developed for derivatization by specific labeling of the ribosomal particles at selected locations with rather small and dense clusters. Potential binding sites are being inserted either by site directed mutagenesis or by chemical modifications to facilitate cluster binding on the surface of the halophilic large and the thermophilic small ribosomal particles, which yield the crystals diffracting to highest resolution (2.9 and 7.3 Å (1 Å = 0.1 nm), respectively). For this purpose, the surface of these ribosomal particles is being characterized and procedures are being developed for quantitative detachment of selected ribosomal proteins and for their incorporation into core particles. The genes of these proteins are being cloned, sequenced, mutated to introduce reactive side groups, mainly cysteines, and overexpressed. In parallel, two in situ small and stable complexes were isolated from the halophilic ribosome. Procedures for their crystal production in large quantities are currently being developed. Models, reconstructed at low resolution from crystalline arrays of ribosomes and their large subunits, are being used for initial low-resolution phasing of the X-ray amplitudes. The interpretation of these models stimulated the design and the crystallization of complexes mimicking defined functional states of a higher quality than those obtained for isolated ribosomes. These models also inspired modelling experiments according to results of functional studies, performed elsewhere, focusing on the progression of nascent proteins.Key words: ribosomes, crystallography, undecagold cluster, heteropolyanions.


2009 ◽  
Vol 65 (a1) ◽  
pp. s33-s34
Author(s):  
Philipp Heuser ◽  
Gerrit Langer ◽  
Victor Lamzin

Sign in / Sign up

Export Citation Format

Share Document