minichromosome maintenance
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 76)

H-INDEX

53
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
pp. 368
Author(s):  
Jana Fulnečková ◽  
Ladislav Dokládal ◽  
Karolína Kolářová ◽  
Martina Nešpor Dadejová ◽  
Klára Procházková ◽  
...  

Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.


2021 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Chiao-Hui Hsieh ◽  
Hsiang-Ning Yeh ◽  
Chen-Tsung Huang ◽  
Wei-Hsuan Wang ◽  
Wen-Ming Hsu ◽  
...  

DNA replication is initiated with the recognition of the starting point of multiple replication forks by the origin recognition complex and activation of the minichromosome maintenance complex 10 (MCM10). Subsequently, DNA helicase, consisting of the MCM protein subunits MCM2-7, unwinds double-stranded DNA and DNA synthesis begins. In previous studies, replication factors have been used as clinical targets in cancer therapy. The results showed that MCM2 could be a proliferation marker for numerous types of malignant cancer. We analyzed samples obtained from patients with neuroblastoma, revealing that higher levels of MCM2 and MCM10 mRNA were associated with poor survival rate. Furthermore, we combined the results of the perturbation-induced reversal effects on the expression levels of MCM2 and MCM10 and the sensitivity correlation between perturbations and MCM2 and MCM10 from the Cancer Therapeutics Response Portal database. Small molecule BI-2536, a polo-like kinase 1 (PLK-1) inhibitor, is a candidate for the inhibition of MCM2 and MCM10 expression. To test this hypothesis, we treated neuroblastoma cells with BI-2536. The results showed that the drug decreased cell viability and reduced the expression levels of MCM2 and MCM10. Functional analysis further revealed enrichments of gene sets involved in mitochondria, cell cycle, and DNA replication for BI-2536-perturbed transcriptome. We used cellular assays to demonstrate that BI-2536 promoted mitochondria fusion, G2/M arrest, and apoptosis. In summary, our findings provide a new strategy for neuroblastoma therapy with BI-2536.


2021 ◽  
Author(s):  
Wezley C. Griffin ◽  
David R. McKinzey ◽  
Kathleen N. Klinzing ◽  
Rithvik Baratam ◽  
Michael A. Trakselis

AbstractThe minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, an active role for MCM8/9 has remained elusive. We interrogated fork progression in cells lacking MCM8 or 9 and find there is a functional partitioning. Loss of MCM8 or 9 slows overall replication speed and increases markers of genomic damage and fork instability, further compounded upon treatment with hydroxyurea. MCM8/9 acts upstream and antagonizes the recruitment of BRCA1 in nontreated conditions. However, upon treatment with fork stalling agents, MCM9 recruits Rad51 to protect and remodel persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon excessive stalling, MCM8/9 directs additional stabilizers to protect forks from degradation. This evidence defines novel multifunctional roles for MCM8/9 in promoting normal replication fork progression and promoting genome integrity following stress.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hiroki Sakai ◽  
Hiroyuki Kimura ◽  
Kanji Otsubo ◽  
Tomoyuki Miyazawa ◽  
Hideki Marushima ◽  
...  

BioEssays ◽  
2021 ◽  
pp. 2100218
Author(s):  
Gunjan Mehta ◽  
Kaustuv Sanyal ◽  
Suman Abhishek ◽  
Eerappa Rajakumara ◽  
Santanu K. Ghosh

2021 ◽  
Author(s):  
Qianqian Sun ◽  
Kun Liu ◽  
Fangzhou Li ◽  
Bingquan Qiu ◽  
Zhisong Fu ◽  
...  

Abstract BackgroundThe disassembly of the replisome plays an essential role in maintaining genome stability at the termination of DNA replication. However, the mechanism of replisome disassembly remains unknown in human. In this study, we screened E3 ligases and deubiquitinases (DUBs) for the ubiquitination of minichromosome maintenance protein (MCM) 7 and provided evidence of this process driving CMG helicase disassembly in human tumor cells. MethodsSILAC-MS/MS was analyzed to identify ubiquitinated proteins in HeLa cells. The ubiquitination/deubiquitylation assay in vitro and in vivo were detected by Western blot. Thymidine and HU were implied to synchronized cell cycle,and detect the role of ubiquitinated MCM7 in cell cycle. Cell fractionation assay was used to detect the function of ubiquitination of MCM7 in chromatin and non-chromatin. Aphidicolin、Etoposide、ICRF-193 and IR were applied to cause replication fork stalling. MG-132 and NMS-873 were used to inhibit the proteasome degradation and p97 segregase. Flow cytometer and FlowJo flow cytometry software were used to cell cycle analysis.ResultsIn our study, we found that the ubiquitin ligase RNF8 catalyzes the k63-linked poly-ubiquitination of MCM7 both in vivo and in vitro, and lysine 145 of MCM7 is the primary ubiquitination site. Moreover, the poly-ubiquitination of MCM7 mainly exists in the chromatin, which is dynamically regulated by the cell cycle, mainly occurs in the late S phase. And DNA damage can significantly reduce the poly-ubiquitylation of MCM7 in the late S phage. Furthermore, the proteasome, p97 segregase, USP29 and ATXN3 are required for the removal of MCM7 ubiquitination to promote the disassembly of CMG on chromatin. ConclusionsIn the late S phage of cell cycle, RNF8 catalyzes the poly-ubiquitination of MCM7, and then initiates the disassembly of CMG helicase from chromatin, which is mediated by p97, proteasome, USP29 and ATXN3 in human. We reveal the novel function of the poly-ubiquitylation of MCM7, which is a regulatory signal to control CMG complex unloading at replication termination sites.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5878
Author(s):  
Mohammad Y. Alshahrani ◽  
Kholoud M. Alshahrani ◽  
Munazzah Tasleem ◽  
Arshiya Akeel ◽  
Tahani M. Almeleebia ◽  
...  

Minichromosome maintenance complex component 7 (MCM7) is involved in replicative licensing and the synthesis of DNA, and its overexpression is a fascinating biomarker for various cancer types. There is currently no effective agent that can prevent the development of cancer caused by the MCM7 protein. However, on the molecular level, inhibiting MCM7 lowers cancer-related cellular growth. With this purpose, this study screened 452 biogenic compounds extracted from the UEFS Natural Products dataset against MCM protein by using the in silico art of technique. The hit compounds UEFS99, UEFS137, and UEFS428 showed good binding with the MCM7 protein with binding energy values of −9.95, −8.92, and −8.71 kcal/mol, which was comparatively higher than that of the control compound ciprofloxacin (−6.50). The hit (UEFS99) with the minimum binding energy was picked for molecular dynamics (MD) simulation investigation, and it demonstrated stability at 30 ns. Computational prediction of physicochemical property evaluation revealed that these hits are non-toxic and have good drug-likeness features. It is suggested that hit compounds UEFS99, UEFS137, and UEFS428 pave the way for further bench work validation in novel inhibitor development against MCM7 to fight the cancers.


Sign in / Sign up

Export Citation Format

Share Document