scholarly journals Interpretation of very low resolution X-ray electron-density maps using core objects

2009 ◽  
Vol 65 (7) ◽  
pp. 690-696 ◽  
Author(s):  
Philipp Heuser ◽  
Gerrit G. Langer ◽  
Victor S. Lamzin
2009 ◽  
Vol 65 (a1) ◽  
pp. s33-s34
Author(s):  
Philipp Heuser ◽  
Gerrit Langer ◽  
Victor Lamzin

2021 ◽  
Vol 922 (2) ◽  
pp. 256
Author(s):  
Giulia Perotti ◽  
Henning O. Sørensen ◽  
Henning Haack ◽  
Anja C. Andersen ◽  
Dario Ferreira Sanchez ◽  
...  

Abstract Protoplanetary disks are dust- and gas-rich structures surrounding protostars. Depending on the distance from the protostar, this dust is thermally processed to different degrees and accreted to form bodies of varying chemical compositions. The primordial accretion processes occurring in the early protoplanetary disk such as chondrule formation and metal segregation are not well understood. One way to constrain them is to study the morphology and composition of forsteritic grains from the matrix of carbonaceous chondrites. Here, we present high-resolution ptychographic X-ray nanotomography and multimodal chemical microtomography (X-ray diffraction and X-ray fluorescence) to reveal the early history of forsteritic grains extracted from the matrix of the Murchison CM2.5 chondrite. The 3D electron density maps revealed, at unprecedented resolution (64 nm), spherical inclusions containing Fe–Ni, very little silica-rich glass and void caps (i.e., volumes where the electron density is consistent with conditions close to vacuum) trapped in forsterite. The presence of the voids along with the overall composition, petrological textures, and shrinkage calculations is consistent with the grains experiencing one or more heating events with peak temperatures close to the melting point of forsterite (∼2100 K), and subsequently cooled and contracted, in agreement with chondrule-forming conditions.


2010 ◽  
Vol 66 (3) ◽  
pp. 268-275 ◽  
Author(s):  
Thomas C. Terwilliger

A method for the identification of α-helices in electron-density maps at low resolution followed by interpretation at moderate to high resolution is presented. Rapid identification is achieved at low resolution, where α-helices appear as tubes of density. The positioning and direction of the α-helices is obtained at moderate to high resolution, where the positions of side chains can be seen. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 Å. An average of 63% of the α-helical residues in these proteins were built and an average of 76% of the residues built matched helical residues in the refined models of the proteins. The overall average r.m.s.d. between main-chain atoms in the modeled α-helices and the nearest atom with the same name in the refined models of the proteins was 1.3 Å.


1997 ◽  
Vol 53 (6) ◽  
pp. 870-879 ◽  
Author(s):  
C. Le Hénaff ◽  
N. K. Hansen ◽  
J. Protas ◽  
G. Marnier

The electron density distribution in lithium triborate LiB3O5 has been studied at room temperature by X-ray diffraction using Ag K \alpha radiation up to 1.02 Å−1 [1439 unique reflections with I > 3\sigma(I)]. Conventional refinements with a free-atom model yield R(F) = 0.0223, wR(F) = 0.0299, S = 1.632. Atom charge refinements show that the lithium should be considered a monovalent ion. Multipolar refinements were undertaken up to fourth order, imposing local non-crystallographic symmetry constraints in order to avoid phase problems leading to meaningless multipole populations due to the non-centrosymmetry of the structure (space group: Pn a21). The residual indices decreased to: R(F) = 0.0147, wR(F) = 0.0193, S = 1.106. The net charges are in good agreement with what can be expected in borate chemistry. Deformation density maps are analysed in terms of \sigma and \pi bonding. The experimental electron distribution in the p z orbitals of triangular B atoms and surrounding O atoms has been analysed by introducing idealized hybridized states. In parallel, the electron density has been determined from ab initio Hartree–Fock calculations on fragments of the structure. Agreement with the X-ray determination is very good and confirms the nature of bonding in the crystal. The amount of transfer of \pi electrons from the oxygen to the triangular B atoms is estimated to be 0.22 electrons by theory.


2019 ◽  
Author(s):  
Sen Yao ◽  
Hunter N.B. Moseley

AbstractHigh-quality three-dimensional structural data is of great value for the functional interpretation of biomacromolecules, especially proteins; however, structural quality varies greatly across the entries in the worldwide Protein Data Bank (wwPDB). Since 2008, the wwPDB has required the inclusion of structure factors with the deposition of x-ray crystallographic structures to support the independent evaluation of structures with respect to the underlying experimental data used to derive those structures. However, interpreting the discrepancies between the structural model and its underlying electron density data is difficult, since derived electron density maps use arbitrary electron density units which are inconsistent between maps from different wwPDB entries. Therefore, we have developed a method that converts electron density values into units of electrons. With this conversion, we have developed new methods that can evaluate specific regions of an x-ray crystallographic structure with respect to a physicochemical interpretation of its corresponding electron density map. We have systematically compared all deposited x-ray crystallographic protein models in the wwPDB with their underlying electron density maps, if available, and characterized the electron density in terms of expected numbers of electrons based on the structural model. The methods generated coherent evaluation metrics throughout all PDB entries with associated electron density data, which are consistent with visualization software that would normally be used for manual quality assessment. To our knowledge, this is the first attempt to derive units of electrons directly from electron density maps without the aid of the underlying structure factors. These new metrics are biochemically-informative and can be extremely useful for filtering out low-quality structural regions from inclusion into systematic analyses that span large numbers of PDB entries. Furthermore, these new metrics will improve the ability of non-crystallographers to evaluate regions of interest within PDB entries, since only the PDB structure and the associated electron density maps are needed. These new methods are available as a well-documented Python package on GitHub and the Python Package Index under a modified Clear BSD open source license.Author summaryElectron density maps are very useful for validating the x-ray structure models in the Protein Data Bank (PDB). However, it is often daunting for non-crystallographers to use electron density maps, as it requires a lot of prior knowledge. This study provides methods that can infer chemical information solely from the electron density maps available from the PDB to interpret the electron density and electron density discrepancy values in terms of units of electrons. It also provides methods to evaluate regions of interest in terms of the number of missing or excessing electrons, so that a broader audience, such as biologists or bioinformaticians, can also make better use of the electron density information available in the PDB, especially for quality control purposes.Software and full results available athttps://github.com/MoseleyBioinformaticsLab/pdb_eda (software on GitHub)https://pypi.org/project/pdb-eda/ (software on PyPI)https://pdb-eda.readthedocs.io/en/latest/ (documentation on ReadTheDocs)https://doi.org/10.6084/m9.figshare.7994294 (code and results on FigShare)


2014 ◽  
Vol 70 (a1) ◽  
pp. C1752-C1752
Author(s):  
Rino Saiga ◽  
Susumu Takekoshi ◽  
Naoya Nakamura ◽  
Akihisa Takeuchi ◽  
Kentaro Uesugi ◽  
...  

In macromolecular crystallography, an electron density distribution is traced to build a model of the target molecule. We applied this method to model building for electron density maps of a brain network. Human cerebral tissue was stained with heavy atoms [1]. The sample was then analyzed at the BL20XU beamline of SPring-8 to obtain a three-dimensional map of X-ray attenuation coefficients representing the electron density distribution. Skeletonized wire models were built by placing and connecting nodes in the map [2], as shown in the figure below. The model-building procedures were similar to those reported for crystallographic analyses of macromolecular structures, while the neuronal network was automatically traced by using a Sobel filter. Neuronal circuits were then analytically resolved from the skeletonized models. We suggest that X-ray microtomography along with model building in the electron density map has potential as a method for understanding three-dimensional microstructures relevant to biological functions.


Sign in / Sign up

Export Citation Format

Share Document