scholarly journals Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions

Biostatistics ◽  
2010 ◽  
Vol 11 (2) ◽  
pp. 317-336 ◽  
Author(s):  
Sylvia Frühwirth-Schnatter ◽  
Saumyadipta Pyne

Abstract Skew-normal and skew-t distributions have proved to be useful for capturing skewness and kurtosis in data directly without transformation. Recently, finite mixtures of such distributions have been considered as a more general tool for handling heterogeneous data involving asymmetric behaviors across subpopulations. We consider such mixture models for both univariate as well as multivariate data. This allows robust modeling of high-dimensional multimodal and asymmetric data generated by popular biotechnological platforms such as flow cytometry. We develop Bayesian inference based on data augmentation and Markov chain Monte Carlo (MCMC) sampling. In addition to the latent allocations, data augmentation is based on a stochastic representation of the skew-normal distribution in terms of a random-effects model with truncated normal random effects. For finite mixtures of skew normals, this leads to a Gibbs sampling scheme that draws from standard densities only. This MCMC scheme is extended to mixtures of skew-t distributions based on representing the skew-t distribution as a scale mixture of skew normals. As an important application of our new method, we demonstrate how it provides a new computational framework for automated analysis of high-dimensional flow cytometric data. Using multivariate skew-normal and skew-t mixture models, we could model non-Gaussian cell populations rigorously and directly without transformation or projection to lower dimensions.

2019 ◽  
Vol 79 (3) ◽  
pp. 577-597
Author(s):  
Sookyoung Son ◽  
Hyunjung Lee ◽  
Yoona Jang ◽  
Junyeong Yang ◽  
Sehee Hong

The purpose of the present study is to compare nonnormal distributions (i.e., t, skew-normal, skew- t with equal skew and skew- t with unequal skew) in growth mixture models (GMMs) based on diverse conditions of a number of time points, sample sizes, and skewness for intercepts. To carry out this research, two simulation studies were conducted with two different models: an unconditional GMM and a GMM with a continuous distal outcome variable. For the simulation, data were generated under the conditions of a different number of time points (4, 8), sample size (300, 800, 1,500), and skewness for intercept (1.2, 2, 4). Results demonstrate that it is not appropriate to fit nonnormal data to normal, t, or skew-normal distributions other than the skew- t distribution. It was also found that if there is skewness over time, it is necessary to model skewness in the slope as well.


2019 ◽  
Vol 29 (6) ◽  
pp. 1542-1562 ◽  
Author(s):  
Yongqiang Tang

The mixed effects model for repeated measures has been widely used for the analysis of longitudinal clinical data collected at a number of fixed time points. We propose a robust extension of the mixed effects model for repeated measures for skewed and heavy-tailed data on basis of the multivariate skew-t distribution, and it includes the multivariate normal, t, and skew-normal distributions as special cases. An efficient Markov chain Monte Carlo algorithm is developed using the monotone data augmentation and parameter expansion techniques. We employ the algorithm to perform controlled pattern imputations for sensitivity analyses of longitudinal clinical trials with nonignorable dropouts. The proposed methods are illustrated by real data analyses. Sample SAS programs for the analyses are provided in the online supplementary material.


2021 ◽  
pp. 1471082X2098131
Author(s):  
Alan Agresti ◽  
Francesco Bartolucci ◽  
Antonietta Mira

We describe two interesting and innovative strands of Murray Aitkin's research publications, dealing with mixture models and with Bayesian inference. Of his considerable publications on mixture models, we focus on a nonparametric random effects approach in generalized linear mixed modelling, which has proven useful in a wide variety of applications. As an early proponent of ways of implementing the Bayesian paradigm, Aitkin proposed an alternative Bayes factor based on a posterior mean likelihood. We discuss these innovative approaches and some research lines motivated by them and also suggest future related methodological implementations.


2018 ◽  
Vol 61 (6) ◽  
pp. 2643-2670
Author(s):  
Wan-Lun Wang ◽  
Ahad Jamalizadeh ◽  
Tsung-I Lin

2018 ◽  
Vol 11 (4) ◽  
pp. 2815-2846 ◽  
Author(s):  
Antoine Houdard ◽  
Charles Bouveyron ◽  
Julie Delon

Sign in / Sign up

Export Citation Format

Share Document