scholarly journals THE EFFECT OF VENTILATION SYSTEM DESIGN ON AIR CONTAMINATION WITH HALOTHANE IN OPERATING THEATRES

1974 ◽  
Vol 46 (10) ◽  
pp. 736-741 ◽  
Author(s):  
D.R. LANGLEY ◽  
A. STEWARD
Author(s):  
Francesco Romano ◽  
Samanta Milani ◽  
Jan Gustén ◽  
Cesare Maria Joppolo

Air cleanliness is a crucial factor in operating theatres (OTs), where the health of patients and staff must be preserved by controlling air contamination. Particular attention must be paid to ultrafine particles (UFPs) size range, generated for instance by electrosurgical instruments (ESTs). OT contamination is also affected by ventilation systems, medical staff and their gowning system, staff routines, instruments, etc. This comparative study is based on experimental measurements of airborne microbial contamination and UFPs carried out during real ongoing surgeries in two OTs equipped with upward displacement ventilation (UWD) and hybrid ventilation, with unidirectional airflow on the operating table and peripheral mixing (UDAF+Mixing) ventilation systems. Airborne contamination concentration at the exit grilles has been analyzed as function of four different surgical phases normally performed during an operation. Results highlight that airborne contamination is influenced by the activities carried out during the surgical phases. EST usage affects the contamination level more than staff size during operation observed. Colony forming unit (CFU) values in the protected area close to the patient’s wound are influenced more by the type of ventilation system than by surgical phases. CFU values decrease by 18 to 50 times from the UWD system to the hybrid one. The large airflow volumes supply together with high air velocities in OTs equipped with UDAF+Mixing systems guarantee a better and a safer airborne contamination control for patients and medical team in comparison with UWD systems.


Author(s):  
Tshokey Tshokey ◽  
Pranitha Somaratne ◽  
Suneth Agampodi

Air contamination in the operating room (OR) is an important contributor for surgical site infections. Air quality should be assessed during microbiological commissioning of new ORs and as required thereafter. Despite many modern methods of sampling air, developing countries mostly depended on conventional methods. This was studied in two ORs of the National Hospital of Sri Lanka (NHSL) with different ventilation system; a conventional ventilation (CV) and a laminar air flow (LAF). Both ORs were sampled simultaneously by two different methods, the settle plate and sampler when empty and during use for a defined time period. Laboratory work was done in the Medical Research Institute. The two methods of sampling showed moderate but highly significant correlation. The OR with CV was significantly more contaminated than LAF when empty as well as during use by both methods. Overall, the difference in contamination was more significant when sampled by the sampler. Differences in contamination in empty and in-use ORs were significant in both ORs, but significance is less in LAF rooms. The consistent and significant correlation between settle plate and sampler showed that the settle plate is an acceptable method. The LAF theatre showed less contamination while empty and during use as expected. Air contamination differences were more significant when sampled with sampler indicating that it is a more sensitive method. Both CV and LAF ORs of the NHSL did not meet the contamination standards for empty theatres but met the standards for in-use indicating that the theatre etiquette was acceptable.


2016 ◽  
Vol 96 ◽  
pp. 285-293 ◽  
Author(s):  
Jurgis Zemitis ◽  
Anatolijs Borodinecs ◽  
Aleksandrs Geikins ◽  
Targo Kalamees ◽  
Kalle Kuusk

1983 ◽  
Vol 91 (3) ◽  
pp. 509-519 ◽  
Author(s):  
Per-Arne Andersson ◽  
Anna Hambraeus ◽  
Ulla Zettersten ◽  
Bengt Ljungqvist ◽  
Kenneth Neikter ◽  
...  

Operating theatres are ventilated for a number of reasons, one of them being to keep numbers of airborne bacteria low at the operation wound. No matter how air is brought into the room, bacteria are removed by dilution rather than by air currents, because of turbulence caused by heat liberated by people and equipment and by movement in the room (Lidwell & Williams, 1960). With ventilation rates up to 20 air changes/hour, the dilution may differ at different sites in the room depending on the design of its ventilation system.


Sign in / Sign up

Export Citation Format

Share Document