scholarly journals Experience-dependent Changes in Basal Dendritic Branching of Layer 2/3 Pyramidal Neurons During a Critical Period for Developmental Plasticity in Rat Barrel Cortex

2004 ◽  
Vol 14 (6) ◽  
pp. 655-664 ◽  
Author(s):  
M. Maravall
2004 ◽  
Vol 92 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Miguel Maravall ◽  
Edward A. Stern ◽  
Karel Svoboda

The development of layer 2/3 sensory maps in rat barrel cortex (BC) is experience dependent with a critical period around postnatal days (PND) 10–14. The role of intrinsic response properties of neurons in this plasticity has not been investigated. Here we characterize the development of BC layer 2/3 intrinsic responses to identify possible sites of plasticity. Whole cell recordings were performed on pyramidal cells in acute BC slices from control and deprived rats, over ages spanning the critical period (PND 12, 14, and 17). Vibrissa trimming began at PND 9. Spiking behavior changed from phasic (more spike frequency adaptation) to regular (less adaptation) with age, such that the number of action potentials per stimulus increased. Changes in spiking properties were related to the strength of a slow Ca2+-dependent afterhyperpolarization. Maturation of the spiking properties of layer 2/3 pyramidal neurons coincided with the close of the critical period and was delayed by deprivation. Other measures of excitability, including I-f curves and passive membrane properties, were affected by development but unaffected by whisker deprivation.


10.1038/4569 ◽  
1999 ◽  
Vol 2 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Karel Svoboda ◽  
Fritjof Helmchen ◽  
Winfried Denk ◽  
David W. Tank

2007 ◽  
Vol 97 (1) ◽  
pp. 692-700 ◽  
Author(s):  
Marat Minlebaev ◽  
Yehezkel Ben-Ari ◽  
Rustem Khazipov

Early in development, cortical networks generate particular patterns of activity that participate in cortical development. The dominant pattern of electrical activity in the neonatal rat neocortex in vivo is a spatially confined spindle-burst. Here, we studied network mechanisms of generation of spindle-bursts in the barrel cortex of neonatal rats using a superfused cortex preparation in vivo. Both spontaneous and sensory-evoked spindle-bursts were present in the superfused barrel cortex. Pharmacological analysis revealed that spindle-bursts are driven by glutamatergic synapses with a major contribution of AMPA/kainate receptors, but slight participation of NMDA receptors and gap junctions. Although GABAergic synapses contributed minimally to the pacing the rhythm of spindle-burst oscillations, surround GABAergic inhibition appeared to be crucial for their compartmentalization. We propose that local spindle-burst oscillations, driven by glutamatergic synapses and spatially confined by GABAergic synapses, contribute to the development of barrel cortex during the critical period of developmental plasticity.


2020 ◽  
Author(s):  
Guillaume Bony ◽  
Arjun A Bhaskaran ◽  
Katy Le Corf ◽  
Andreas Frick

ABSTRACTThe mouse primary somatosensory cortex (S1) processes tactile sensory information and is the largest neocortex area emphasizing the importance of this sensory modality for rodent behavior. Most of our knowledge regarding information processing in S1 stems from studies of the whisker-related barrel cortex (S1–BC), yet the processing of tactile inputs from the hind-paws is poorly understood. We used in vivo whole-cell patch-clamp recordings from layer (L) 2/3 pyramidal neurons (PNs) of the S1 hind-paw (S1-HP) region of anaesthetized wild type (WT) mice to investigate their evoked sub- and supra-threshold activity, intrinsic properties, and spontaneous activity. Approximately 45% of these L2/3 PNs responded to brief contralateral HP stimulation in a subthreshold manner, ~5% fired action potentials, and ~50% of L2/3 PNs did not respond at all. The evoked subthreshold responses had long onset- (~23 ms) and peak-latencies (~61 ms). The majority (86%) of these L2/3 PNs responded to prolonged (stance-like) HP stimulation with both on- and off-responses. HP stimulation responsive L2/3 PNs had a greater intrinsic excitability compared to non-responsive ones, possibly reflecting differences in their physiological role. Similar to S1-BC, L2/3 PNs displayed up- and down-states, and low spontaneous firing rates (~0.1 Hz). Our findings support a sparse coding scheme of operation for S1–HP L2/3 PNs and highlight both differences and similarities with L2/3 PNs from other somatosensory cortex areas.KEY POINTSResponses of layer (L) 2/3 pyramidal neurons (PNs) of the primary somatosensory hind-paw cortex (S1-HP) to contralateral hind-paw stimulation reveal both differences and similarities compared to those of somatosensory neurons responding to other tactile (e.g. whiskers, forepaw, tongue) modalities.Similar to whisker-related barrel cortex (S1-BC) and forepaw cortex (S1-FP) S1-HP L2/3 PNs show a low spontaneous firing rate and a sparse action potential coding of evoked activity.In contrast to S1-BC, brief hind-paw stimulus evoked responses display a long latency in S1-HP neurons consistent with their different functional role.The great majority of L 2/3 PNs respond to prolonged hind-paw stimulation with both on- and off-responses.These results help us to better understand sensory information processing within layer 2/3 of the neocortex and the regional differences related to various tactile modalities.


Sign in / Sign up

Export Citation Format

Share Document