dendritic branching
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 36)

H-INDEX

42
(FIVE YEARS 3)

Author(s):  
Wanxing Li ◽  
Tianling Cheng ◽  
Xinran Dong ◽  
Huiyao Chen ◽  
Lin Yang ◽  
...  

2021 ◽  
Author(s):  
Beatrice Uguagliati ◽  
Fiorenza Stagni ◽  
Marco Emili ◽  
Andrea Giacomini ◽  
Carla Russo ◽  
...  

Down syndrome (DS), which is due to triplication of chromosome 21, is constantly associated with intellectual disability (ID). ID can be ascribed to both neurogenesis impairment and dendritic pathology. These defects are replicated in the Ts65Dn mouse, a widely used model of DS. While neurogenesis impairment in DS is a fetal event, dendritic pathology occurs after the first postnatal months. Neurogenesis alterations across the lifespan have been extensively studied in the Ts65Dn mouse. In contrast, there is scarce information regarding dendritic alterations at early life stages in this and other models, although there is evidence for dendritic alterations in adult mouse models. Thus, the goal of the current study was to establish whether dendritic alterations are already present in the neonatal period in Ts65Dn mice. In Golgi-stained brains we quantified the dendritic arbors of layer II/III pyramidal neurons in the frontal cortex of Ts65Dn mice aged 2 (P2) and 8 (P8) days and their euploid littermates. In P2 Ts65Dn mice we found a moderate hypotrophy of the apical and collateral dendrites but a patent hypotrophy of the basal dendrites. In P8 Ts65Dn mice the distalmost apical branches were missing or reduced in number but there were no alterations in the collateral and basal dendrites. No genotype effects were detected on either somatic or dendritic spine density. This study shows dendritic branching defects that mainly involve the basal domain in P2 Ts65Dn mice, and the apical but not the other domains in P8 Ts65Dn mice. This suggests that dendritic defects may be related to dendritic compartment and age. The lack of a severe dendritic pathology in Ts65Dn pups is reminiscent of the delayed appearance of patent dendritic alterations in newborns with DS. This similarly highlights the usefulness of the Ts65Dn model for the study of the mechanisms underlying dendritic alterations in DS and the design of possible therapeutic interventions.


2021 ◽  
Author(s):  
Asha Iyer ◽  
Verl B Siththanandan ◽  
Victoria Lu ◽  
Ramesh V Nair ◽  
Lee O Vaasjo ◽  
...  

In the cerebral cortex, cortical projection neurons comprise classes of neurons project to distant regions of the central nervous system. These neurons develop from the same progenitor pool, but they acquire strikingly different inputs and outputs to underpin strikingly different functions. The question of how corticospinal projection neurons - involved in motor function and implicated in paralysis - and callosal projection neurons - involved in cognitive function and implicated in autism - develop represents a fundamental and clinically important question in neurodevelopment. A network of transcription factors, including the selector gene Fezf2, is central to specifying cortical projection neuron fates. Gene regulation up- and down-stream of these transcription factors, however, is not well understood, particularly as it relates to the development of the major inputs to cortical projection neurons. Here we show that the miR-193b~365 microRNA cluster downstream of Fezf2 cooperatively represses the signaling molecule Mapk8, and impacts dendritic branching of cortical projection neurons.


Author(s):  
Michelle Naidoo ◽  
Fayola Levine ◽  
Tamara Gillot ◽  
Akintunde T. Orunmuyi ◽  
E. Oluwabunmi Olapade-Olaopa ◽  
...  

High mortality rates of prostate cancer (PCa) are associated with metastatic castration-resistant prostate cancer (CRPC) due to the maintenance of androgen receptor (AR) signaling despite androgen deprivation therapies (ADTs). The 8q24 chromosomal locus is a region of very high PCa susceptibility that carries genetic variants associated with high risk of PCa incidence. This region also carries frequent amplifications of the PVT1 gene, a non-protein coding gene that encodes a cluster of microRNAs including, microRNA-1205 (miR-1205), which are largely understudied. Herein, we demonstrate that miR-1205 is underexpressed in PCa cells and tissues and suppresses CRPC tumors in vivo. To characterize the molecular pathway, we identified and validated fry-like (FRYL) as a direct molecular target of miR-1205 and observed its overexpression in PCa cells and tissues. FRYL is predicted to regulate dendritic branching, which led to the investigation of FRYL in neuroendocrine PCa (NEPC). Resistance toward ADT leads to the progression of treatment related NEPC often characterized by PCa neuroendocrine differentiation (NED), however, this mechanism is poorly understood. Underexpression of miR-1205 is observed when NED is induced in vitro and inhibition of miR-1205 leads to increased expression of NED markers. However, while FRYL is overexpressed during NED, FRYL knockdown did not reduce NED, therefore revealing that miR-1205 induces NED independently of FRYL.


2021 ◽  
Vol 18 (2) ◽  
pp. 198-207
Author(s):  
M. V. Zueva ◽  
A. N. Zhuravleva ◽  
A. N. Bogolepova

Irreversible damage to the structure of axons and death of the retinal ganglion cell (RGC) soma in primary open-angle glaucoma (POAG) and Alzheimer’s disease (AD) develop against the background of the already existing clinical manifestation, which is preceded by a slow period of progressive loss of synapses and dendrites of the RGCs. Recent studies have shown that the integrity of the RGC’s dendritic branching can serve as both a target of neuroprotective therapy and a sensitive marker of retinal degeneration in AD and glaucoma. To develop methods of complex neuroprotective therapy, it is necessary to substantiate the targets and tactics of affecting the dendritic tree of the RGCs, the remodeling of which, according to modern concepts, can be closely and antagonistically related to the regeneration of the axon after its damage in trauma and neurodegenerative diseases. RGCs are highly capable of functional modification. Currently, it has been proven that the use of neuroprotective drugs and neurotrophins is promising for maintaining the adaptive plasticity of RGCs and restoring their synaptic contacts at the level of the retina and brain. Understanding the features of the adaptive plasticity of RGCs in AD and glaucoma will make possible to use technologies to activate the internal potential of neuronal remodeling, including the modification of dendritic branching of RGCs and regeneration of their axons, in the preclinical stages of these diseases. Increasing knowledge about the sequence and mechanisms of early events in the retina’s inner plexiform layer will contribute to the development of targeted neuroprotective therapy and new technologies to detect early POAG, AD, and, possibly, other systemic and local neurodegenerative conditions. 


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3280
Author(s):  
Pavel A. Tikhonov ◽  
Nataliya G. Vasilenko ◽  
Marat O. Gallyamov ◽  
Georgii V. Cherkaev ◽  
Viktor G. Vasil’ev ◽  
...  

New multiarm stars have been synthesized based on polylithium derivatives of high-generation carbosilane dendrimers. In the synthesis of multiarm stars based on the eighth-generation dendrimer, steric hindrances were observed even during the synthesis of a polylithium initiator. Subsequently, this led to chain transfer reactions between growing arms, as well as other side effects. As a result, dense nanogel formations with a higher tendency of ordering than in classical objects of this type were isolated from the reaction mixture. The study of the rheology of multiarm stars based on sixth-generation dendrimers made it possible to determine the activation energies of viscous flow in these objects, which makes it possible to consider them as objects with a macromolecular nature and a reptation flow mechanism.


2021 ◽  
Author(s):  
Ferdi Ridvan Kiral ◽  
Suchetana Bias Dutta ◽  
Gerit Arne Linneweber ◽  
Caroline Poppa ◽  
Max von Kleist ◽  
...  

Variability of synapse numbers and partners despite identical genes reveals limits of genetic determinism. Non-genetic perturbation of brain wiring can therefore reveal to what extent synapse formation is precise and absolute, or promiscuous and relative. Here, we show the role of relative partner availability for synapse formation in the fly brain through perturbation of developmental temperature. Unexpectedly, slower development at lower temperatures substantially increases axo-dendritic branching, synapse numbers and non canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we further show that scalability of synapse numbers and ratios is preserved when relative availability of synaptic partners is changed in a DIPγ mutant that ablates R7's preferred synaptic partner. Behaviorally, movement activity scales inversely with synapse numbers, while movement precision and relative connectivity are congruently robust. Hence, the fly genome encodes scalable relative connectivity to develop functional, but not identical, brains.


2021 ◽  
Vol 152 ◽  
pp. 109948
Author(s):  
Yong-Hui Zhang ◽  
Ming-Ming Liu ◽  
Jun-Li Chen ◽  
Ke-Feng Xie ◽  
Shao-Ming Fang

Sign in / Sign up

Export Citation Format

Share Document