pyramidal cells
Recently Published Documents


TOTAL DOCUMENTS

2445
(FIVE YEARS 545)

H-INDEX

151
(FIVE YEARS 18)

2022 ◽  
Author(s):  
Joanna L Spencer-Segal ◽  
Swapnil Gavade ◽  
Qiang Wei ◽  
Colin Johnston ◽  
Savannah Kounelis ◽  
...  

Stress hormone signaling via the glucocorticoid receptor (GR) modulates vulnerability to stress-related disorders, but whether GR influences how the brain encodes contextual experience is unknown. Mice with lifelong GR overexpression in forebrain glutamatergic neurons (GRov) show increased sensitivity to environmental stimuli. This phenotype is developmentally programmed and associated with profound changes in hippocampal gene expression. We hypothesized that GR overexpression influences hippocampal encoding of experiences. To test our hypothesis, we performed in vivo microendoscopic calcium imaging of 1359 dorsal CA1 pyramidal cells in freely behaving male and female WT and GRov mice during exploration of a novel open field. We compared calcium amplitude and event rate as well as sensitivity to center location and mobility between genotypes. GRov neurons exhibited higher average calcium activity than WT neurons in the novel open field. While most neurons showed sensitivity to center location and/or mobility, GRov neurons were more likely to be sensitive to center location and less likely to be sensitive to mobility, as compared to WT neurons. More than one-third of behavior-selective GRov neurons were uniquely sensitive to location without mobility sensitivity; these uniquely center-sensitive neurons were rare in WT. We conclude that dorsal CA1 pyramidal cells in GRov mice show increased activity in a novel environment and preferentially encode emotionally salient behavior. This heightened sensitivity to a novel environment and preferential encoding of emotionally salient elements of experience could underlie differential stress vulnerability in humans with increased glucocorticoid sensitivity.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
P. Kleis ◽  
E. Paschen ◽  
U. Häussler ◽  
Y. A. Bernal Sierra ◽  
C. A. Haas

Abstract Background Optogenetic tools allow precise manipulation of neuronal activity via genetically encoded light-sensitive proteins. Currently available optogenetic inhibitors are not suitable for prolonged use due to short-lasting photocurrents, tissue heating, and unintended changes in ion distributions, which may interfere with normal neuron physiology. To overcome these limitations, a novel potassium channel-based optogenetic silencer, named PACK, was recently developed. The PACK tool has two components: a photoactivated adenylyl cyclase from Beggiatoa (bPAC) and a cAMP-dependent potassium channel, SthK, which carries a large, long-lasting potassium current in mammalian cells. Previously, it has been shown that activating the PACK silencer with short light pulses led to a significant reduction of neuronal firing in various in vitro and acute in vivo settings. Here, we examined the viability of performing long-term studies in vivo by looking at the inhibitory action and side effects of PACK and its components in healthy and epileptic adult male mice. Results We targeted hippocampal cornu ammonis (CA1) pyramidal cells using a viral vector and enabled illumination of these neurons via an implanted optic fiber. Local field potential (LFP) recordings from CA1 of freely moving mice revealed significantly reduced neuronal activity during 50-min intermittent (0.1 Hz) illumination, especially in the gamma frequency range. Adversely, PACK expression in healthy mice induced chronic astrogliosis, dispersion of pyramidal cells, and generalized seizures. These side effects were independent of the light application and were also present in mice expressing bPAC without the potassium channel. Light activation of bPAC alone increased neuronal activity, presumably via enhanced cAMP signaling. Furthermore, we applied bPAC and PACK in the contralateral hippocampus of chronically epileptic mice following a unilateral injection of intrahippocampal kainate. Unexpectedly, the expression of bPAC in the contralateral CA1 area was sufficient to prevent the spread of spontaneous epileptiform activity from the seizure focus to the contralateral hippocampus. Conclusion Our study highlights the PACK tool as a potent optogenetic inhibitor in vivo. However, further refinement of its light-sensitive domain is required to avoid unexpected physiological changes.


2022 ◽  
Author(s):  
Andrew Tyler Landau ◽  
Pojeong Park ◽  
David Wong-Campos ◽  
Tian He ◽  
Adam Ezra Cohen ◽  
...  

Back-propagating action potentials (bAPs) regulate synaptic plasticity by evoking voltage-dependent calcium influx throughout dendrites. Attenuation of bAP amplitude in distal dendritic compartments alters plasticity in a location-specific manner by reducing bAP-dependent calcium influx. However, it is not known if neurons exhibit branch-specific variability in bAP-dependent calcium signals, independent of distance-dependent attenuation. Here, we reveal that bAPs fail to evoke calcium influx through voltage-gated calcium channels (VGCCs) in a specific population of dendritic branches in cortical layer 2/3 pyramidal cells, despite evoking substantial VGCC-mediated calcium influx in sister branches. These branches contain VGCCs and successfully propagate bAPs in the absence of synaptic input; nevertheless, they fail to exhibit bAP-evoked calcium influx due to a branch-specific reduction in bAP amplitude. We demonstrate that these branches have more elaborate branch structure compared to sister branches, which causes a local reduction in electrotonic impedance and bAP amplitude. Finally, we show that bAPs still amplify synaptically-mediated calcium influx in these branches because of differences in the voltage-dependence and kinetics of VGCCs and NMDA-type glutamate receptors. Branch-specific compartmentalization of bAP-dependent calcium signals may provide a mechanism for neurons to diversify synaptic tuning across the dendritic tree.


2022 ◽  
Vol 12 ◽  
Author(s):  
Logan A. Becker ◽  
Hector Penagos ◽  
Francisco J. Flores ◽  
Dara S. Manoach ◽  
Matthew A. Wilson ◽  
...  

Clinical populations have memory deficits linked to sleep oscillations that can potentially be treated with sleep medications. Eszopiclone and zolpidem (two non-benzodiazepine hypnotics) both enhance sleep spindles. Zolpidem improved sleep-dependent memory consolidation in humans, but eszopiclone did not. These divergent results may reflect that the two drugs have different effects on hippocampal ripple oscillations, which correspond to the reactivation of neuronal ensembles that represent previous waking activity and contribute to memory consolidation. We used extracellular recordings in the CA1 region of rats and systemic dosing of eszopiclone and zolpidem to test the hypothesis that these two drugs differentially affect hippocampal ripples and spike activity. We report evidence that eszopiclone makes ripples sparser, while zolpidem increases ripple density. In addition, eszopiclone led to a drastic decrease in spike firing, both in putative pyramidal cells and interneurons, while zolpidem did not substantially alter spiking. These results provide an explanation of the different effects of eszopiclone and zolpidem on memory in human studies and suggest that sleep medications can be used to regulate hippocampal ripple oscillations, which are causally linked to sleep-dependent memory consolidation.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261644
Author(s):  
Amit Benbenishty ◽  
Jacob Schneiderman

Background Brain reperfusion following an ischemic event is essential for tissue viability, however, it also involves processes that promote neuronal cell death. We have recently shown that local expression of the hormone leptin in cardiovascular organs drives deleterious remodeling. As cerebral ischemia-reperfusion (IR) lesions derive expression of both the leptin hormone and its receptor, we hypothesized that blocking leptin activity in the injured brain area will reduce the deleterious effects of IR injury. Methods C57BL6 male mice underwent bilateral common carotid artery and external carotid artery ligation. The right hemisphere was reperfused after 12 minutes, followed by intraarterial injection of either a low-dose leptin antagonist or saline solution via the ipsilateral ICA. The left common carotid artery remained ligated. Fifteen IR/leptin antagonist-injected and fourteen IR/saline-injected mice completed the experiment. Five days after surgery brains were collected and samples of the hippocampal CA1 region were analyzed for cell viability (H&E) and apoptosis (TUNEL and caspase3), for neuroinflammation (Iba1), and for signaling pathways of pSTAT3 and pSmad2. Results The right hemisphere hippocampal CA1 region subjected to IR and saline injection exhibited increased apoptosis and necrosis of pyramidal cells. Also, increased density of activated microglia/macrophages was evident around the CA1 region. Comparatively, leptin antagonist treatment at reperfusion reduced apoptosis and necrosis of pyramidal cells, as indicated by increased number of viable cells (p < 0.01), and reduced TUNEL (p < 0.001) and caspase3-positive cells (p<0.05). Furthermore, this treatment reduced the density of activated microglia/macrophages (p < 0.001) in the CA1 region. Signaling pathway analysis revealed that while pSTAT3 and pSmad2-positive cells were found surrounding the stratum pyramidal in saline-treated animals, pSTAT3 signal was undetected and pSmad2 was greatly reduced in this territory following leptin antagonist treatment (p < 0.01). Conclusions Inhibition of leptin activity in hemispheric IR injury preserved the viability of ipsilateral hippocampal CA1 neurons, likely by preventing apoptosis and local inflammation. These results indicate that intraarterial anti-leptin therapy may have clinical potential in reducing hemispheric brain IR injury.


2022 ◽  
Author(s):  
Miguel R Chuapoco ◽  
Nicholas Flytzanis ◽  
Nick Goeden ◽  
J Christopher Octeau ◽  
Kristina M Roxas ◽  
...  

Adeno-associated viruses (AAVs) can enable robust and safe gene delivery to the mammalian central nervous system (CNS). While the scientific community has developed numerous neurotropic AAV variants for systemic gene-transfer to the rodent brain, there are few AAVs that efficiently access the CNS of higher order primates. We describe here AAV.CAP-Mac, an engineered AAV variant that enables systemic, brain-wide gene delivery in infants of two Old World primate species--the rhesus macaque (Macaca mulatta) and the green monkey (Chlorocebus sabaeus). We identified CAP-Mac using a multi-species selection strategy, initially screening our library in the adult common marmoset (Callithrix jacchus) and narrowing our pool of test-variants for another round of selection in infant macaques. In individual characterization, CAP-Mac robustly transduces human neurons in vitro and Old World primate neurons in vivo, where it targets all lobes of cortex, the cerebellum, and multiple subcortical regions of disease relevance. We use CAP-Mac for Brainbow-like multicolor labeling of macaque neurons throughout the brain, enabling morphological reconstruction of both medium spiny neurons and cortical pyramidal cells. Because of its broad distribution throughout the brain and high neuronal efficiency in infant Old World primates compared to AAV9, CAP-Mac shows promise for researchers and clinicians alike to unlock novel, noninvasive access to the brain for efficient gene transfer.


2021 ◽  
Author(s):  
Petra Wahle ◽  
Eric Sobierajski ◽  
Ina Gasterstädt ◽  
Nadja Lehmann ◽  
Susanna Weber ◽  
...  

The canonical view of neuronal function is that inputs are received by dendrites and somata, become integrated in the somatodendritic compartment and upon reaching a sufficient threshold, generate axonal output with axons emerging from the cell body. The latter is not necessarily the case. Instead, axons may originate from dendrites. The terms “axon carrying dendrite” (AcD) and “AcD neurons” have been coined to describe this feature. Here, we report on the diversity of axon origins in neocortical pyramidal cells. We found that in non-primates (rodent, cat, ferret, pig), 10-21% of pyramidal cells of layers II-VI had an AcD. In marked contrast, in macaque and human, this proportion was lower, and it was particularly low for supragranular neurons. Unexpectedly, pyramidal cells in the white matter of postnatal cat and aged human cortex exhibit AcDs to much higher percentages. In rodent hippocampus, AcD cells are functionally ’privileged‘, since inputs here can circumvent somatic integration and lead to immediate action potential initiation in the axon. Our findings expand the current knowledge regarding the distribution and proportion of AcD cells in neocortial regions of non-primate taxa, which strikingly differs from primates where these cells are mainly found in deeper layers and white matter.


2021 ◽  
Author(s):  
Edmundo Lopez-Sola ◽  
Roser Sanchez-Todo ◽  
Èlia Lleal ◽  
Elif Köksal-Ersöz ◽  
Maxime Yochum ◽  
...  

The prospect of personalized computational modeling in neurological disorders, and in particular in epilepsy, is poised to revolutionize the field. Work in the last two decades has demonstrated that neural mass models (NMM) can realistically reproduce and explain epileptic seizure transitions as recorded by electrophysiological methods (EEG, SEEG). In previous work, advances were achieved by i) increasing excitation in NMM and ii) heuristically varying network inhibitory coupling parameters or, equivalently, inhibitory synaptic gains. Based on those studies, we provide here a laminar neural mass model capable of realistically reproducing the electrical activity recorded by SEEG in the epileptogenic zone during interictal to ictal states. With the exception of the external noise input onto the pyramidal cell population, the model dynamics are autonomous --- all model parameters are static. By setting the system at a point close to bifurcation, seizure-like transitions are generated, including pre-ictal spikes, low voltage fast activity, and ictal rhythmic activity. A novel element in the model is a physiologically plausible algorithm for chloride accumulation dynamics: the gain of GABAergic post-synaptic potentials is modulated by the pathological accumulation of Cl$^-$ in pyramidal cells, due to high inhibitory input and/or dysfunctional chloride transport. In addition, in order to simulate SEEG signals to compare with real recordings performed in epileptic patients, the NMM is embedded first in a layered model of the neocortex and then in a realistic physical model. We compare modeling results with data from four epilepsy patient cases. By including key pathophysiological mechanisms, the proposed framework captures succinctly the electrophysiological phenomenology observed in ictal states, paving the way for robust personalization methods using brain network models based on NMMs.


2021 ◽  
Vol 23 (1) ◽  
pp. 202
Author(s):  
Estilla Zsófia Tóth ◽  
Felicia Gyöngyvér Szabó ◽  
Ágnes Kandrács ◽  
Noémi Orsolya Molnár ◽  
Gábor Nagy ◽  
...  

Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated—in conjunction with the electron microscopy—that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.


Sign in / Sign up

Export Citation Format

Share Document