Information-Theoretic Channel for Multi-exposure Image Fusion

2021 ◽  
Author(s):  
Qiaohong Hao ◽  
Qi Zhao ◽  
Mateu Sbert ◽  
Qinghe Feng ◽  
Cosmin Ancuti ◽  
...  

Abstract Multi-exposure image fusion has emerged as an increasingly important and interesting research topic in information fusion. It aims at producing an image with high quality by fusing a set of differently exposed images. In this article, we present a pixel-level method for multi-exposure image fusion based on an information-theoretic approach. In our scheme, an information channel between two source images is used to compute the Rényi entropy associated with each pixel in one image with respect to the other image and hence to produce the weight maps for the source images. Since direct weight-averaging of the source images introduce unpleasing artifacts, we employ Laplacian multi-scale fusion. Based on this pyramid scheme, images at every scale are fused by weight maps, and a final fused image is inversely reconstructed. Multi-exposure image fusion with the proposed method is easy to construct and implement and can deliver, in less than a second for a set of three input images of size 512$\times $340, competitive and compelling results versus state-of-art methods through visual comparison and objective evaluation.

Author(s):  
R. V. Prasad ◽  
R. Muralishankar ◽  
S. Vijay ◽  
H. N. Shankar ◽  
Przemyslaw Pawelczak ◽  
...  

2014 ◽  
Vol 14 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Yong Yang ◽  
Shuying Huang ◽  
Junfeng Gao ◽  
Zhongsheng Qian

Abstract In this paper, by considering the main objective of multi-focus image fusion and the physical meaning of wavelet coefficients, a discrete wavelet transform (DWT) based fusion technique with a novel coefficients selection algorithm is presented. After the source images are decomposed by DWT, two different window-based fusion rules are separately employed to combine the low frequency and high frequency coefficients. In the method, the coefficients in the low frequency domain with maximum sharpness focus measure are selected as coefficients of the fused image, and a maximum neighboring energy based fusion scheme is proposed to select high frequency sub-bands coefficients. In order to guarantee the homogeneity of the resultant fused image, a consistency verification procedure is applied to the combined coefficients. The performance assessment of the proposed method was conducted in both synthetic and real multi-focus images. Experimental results demonstrate that the proposed method can achieve better visual quality and objective evaluation indexes than several existing fusion methods, thus being an effective multi-focus image fusion method.


Sign in / Sign up

Export Citation Format

Share Document