Measurement Science Review
Latest Publications


TOTAL DOCUMENTS

525
(FIVE YEARS 93)

H-INDEX

22
(FIVE YEARS 3)

Published By De Gruyter Open Sp. Z O.O.

1335-8871

2021 ◽  
Vol 21 (6) ◽  
pp. 158-167
Author(s):  
Branko Štrbac ◽  
Dragan Rodić ◽  
Milan Delić ◽  
Borislav Savković ◽  
Miodrag Hadžistević

Abstract Numerous studies have shown that the choice of measurement strategy (number and position of measurement points) when measuring form error on a coordinate-measuring machine (CMM) depends on the characteristics of the machining process which was used to machine the examined surface. The accuracy of form error assessment is the primary goal of verification procedures and accuracy is considered perfect only in the case of the ideal verification operator. Since the ideal verification operator in the “point-by-point” measuring mode is almost never used in practice, the aim of this study was to examine a relationship which had not been examined in earlier studies, namely how the machining process, surface roughness and a reduced number of points in the measurement strategy affect the accuracy of flatness error assessment. The research included four most common cutting processes applied to flat surfaces divided into nine different classes of roughness. In order to determine functional dependency between the observed input variables and the output, statistical regression models and neuro-fuzzy logic (artificial intelligence tool) were used. The analyses confirmed the significance of all three input parameters, with surface roughness being the most significant one. Both the statistical regression models and neuro-fuzzy models proved to be adequate, matching the experimental results. The use of these models makes it possible to determine flatness error measured on a CMM if input variables considered in the paper are known.


2021 ◽  
Vol 21 (6) ◽  
pp. 180-184
Author(s):  
Sichen Fan ◽  
Jun Ruan ◽  
Dandan Liu ◽  
Xinliang Wang ◽  
Fan Yang ◽  
...  

Abstract Phase variations of the interrogation field lead to frequency shifts in Ramsey-type atomic clocks. This paper reports the development of a 300 MHz Mach–Zehnder (MZ) switch that effectively suppresses phase-transient effects. Similar to MZ interferometers, this radio-frequency (RF) MZ switch comprises two arms that are power- and phase-matched with each other. By inserting a PIN diode RF switch in one arm, the other arm remains undisturbed, freeing it of the phase transient. Trigger phase fluctuation measurements are implemented by using a lock-in amplifier to extract the in-phase and quadrature (I/Q) demodulation data. The results show that the extinction ratio of the RF MZ switch phase fluctuations is <5 μrad, which is significantly lower than that of a PIN (50 μrad). When applied to a cesium fountain clock, the RF MZ switch produces a frequency shift better than 1.73 × 10−16.


2021 ◽  
Vol 21 (6) ◽  
pp. 191-196
Author(s):  
Liping Tian ◽  
Lingbin Shen ◽  
Lin Chen ◽  
Lili Li ◽  
Jinshou Tian ◽  
...  

Abstract Streak tubes with large-format and high spatial resolution are central to mm-spatial-resolved STIL detection system and hyperspectral resolved ICF experiment. In this paper, we established a large-format streak tube with a three-coaxial-cylindrical single-lens focusing system, a spherically curved photocathode and phosphor screen model in CST Particle Studio. The temporal and spatial resolution were calculated and mimicked based on the Monte-Carlo sampling method in static and dynamic mode. The simulated results show that the static spatial resolution reaches 50 lp/mm over the whole 50 mm effective photocathode length, and the physical temporal resolution is better than 45 ps. Furthermore, in dynamic working mode, the streak tube can achieve spatial resolution of 10 lp/mm and temporal resolution of 60 ps. The simulation results will be used to guide the design and production for large-format with high spatial resolution streak tube development.


2021 ◽  
Vol 21 (6) ◽  
pp. 197-204
Author(s):  
Jun Che ◽  
Yanxia Sun ◽  
Xiaojun Jin ◽  
Yong Chen

Abstract Three-dimensional profilometry tends to be less effective at measuring discontinuous surfaces. To overcome this problem, an optimized profilometry based on fringe projection is proposed in this paper. Due to the limitation of the shooting angle, there are projection blind spots on the surface of discontinuous objects. Since the noises and unwrapping errors are always localized at the projection blind spots, an algorithm is designed to determine the blind spots automatically with the light intensity difference information. Besides, in order to improve the measurement accuracy, a processing scheme is introduced to deal with the local height distortion introduced by the dual-frequency grating profilometry. Lots of measurement tests on various surfaces are carried out to assess the optimized profilometry, and experimental results indicate that the modified profilometry system works more robust with high reliability and accuracy in measuring different kinds of surfaces, especially discontinuous ones.


2021 ◽  
Vol 21 (6) ◽  
pp. 205-208
Author(s):  
Peter Andris ◽  
Tomáš Dermek ◽  
Ivan Frollo

Abstract This article describes the measurement of the relation between input and output signals using two techniques: with a signal generator and with the thermal noise of a known resistance. Each of the techniques has its advantages and disadvantages. Both methods are tested and the results are compared. The input signal of the receiver is known in volts, while the output signal is in ADC (analogue-to-digital converter) units. It is the main difference versus the gain. Knowledge of the relation enables recalculation of the output signal into the input of the receiver or vice versa. It is important in some experiments. The method with the harmonic signal requires a suitable NMR spectroscopic console, generator of the harmonic signal and an attenuator, the method with the noise requires only the NMR console. It indicates that both methods are simple and cheap. The measured data are processed on a standard PC using common programs.


2021 ◽  
Vol 21 (6) ◽  
pp. 185-190
Author(s):  
Krzysztof Dziarski ◽  
Arkadiusz Hulewicz

Abstract The thermographic temperature measurement is burdened with uncertainty. This non-contact temperature measurement method makes it possible to measure the temperature of the electrical device under load. When the observed object is small (a few square millimeters) the spatial resolution of the thermographic cameras is often insufficient. In this case, the use of the additional macro lens is needed. After using an additional lens, the uncertainty of the thermographic measurement is different from the uncertainty of thermographic measurement without an additional lens. The values of the uncertainty contributions depend on the conditions during the measurement and the used methodology. The authors constructed an uncertainty budget of thermographic temperature measurement with an additional macro lens, based on EA-4/02 (European Accreditation publications). The uncertainty contributions were also calculated. On the basis of the calculated values of the uncertainty contributions, it was determined which factor had the greatest impact on the value of the thermographic temperature measurement with an additional lens.


2021 ◽  
Vol 21 (6) ◽  
pp. 168-179
Author(s):  
Kiril Demerdziev ◽  
Vladimir Dimchev

Abstract As harmonic distortion of voltage and current is reality in the power system, the need for accurate measurement of electrical power and energy goes beyond the instruments’ specifications and calibration procedures regarding pure sine wave signals. Several international standards and recommendations provide test signals for examination of electricity meters under non-sinusoidal conditions, however, not all of the test signal parameters’ possible states are faithfully represented in those documents. Because the high order harmonics may possess random amplitudes and phase shifts in relation to components at fundamental frequency, it is important that the meter’s performance is verified with random waveforms as well. The non-linear dependence between the measured power/energy and the phase shifts, both between fundamental and harmonic components, provides additional complexity of such an analysis. Simple test signals, which are in accordance with the standards’ demands and propositions, are used for determination of the measurement error in case of different harmonic distortion parameter change. In order for a general error function for any measurement device to be determined, mathematical modelling, regarding the results from multiple tests, is performed. The mathematical model presents a strong dependence between a single component’s phase shifts and a meter’s error and it provides a systematization of all signal parameters’ influence on the measurement accuracy.


2021 ◽  
Vol 21 (5) ◽  
pp. 150-157
Author(s):  
Maciej Jakubczak ◽  
Jacek Kurzyna ◽  
Arsenii Riazantsev

Abstract The magnetic circuit of a 500 W class Hall thruster, an electric propulsive device for spacecraft, was characterized experimentally and the results compared with simulation in order to verify the design. The commercial 3D gaussmeter, which was used in this work, was additionally recalibrated to compensate for translation and rotation of individual Hall sensors inside the probe. The Stokes stream function approach was applied to reconstruct the magnetic field topography in the thruster. The procedure, carried out on four different cases, yielded very good agreement between simulations and measurements, even for cusped configurations. Presented technique could be used as a robust method of verification of new magnetic circuit designs not only for Hall thrusters but also for a wide class of plasma devices for which detailed knowledge about actual distribution of magnetic field is crucial for optimization.


2021 ◽  
Vol 21 (5) ◽  
pp. 136-141
Author(s):  
Przemysław Otomański ◽  
Eligiusz Pawłowski ◽  
Anna Szlachta

Abstract The paper presents a possible application of integrated LabVIEW environment to the final evaluation of measurement results in direct measurement. The possibilities of presenting and visualizing the uncertainty of measurement results in a convenient and user-friendly form are also discussed. The topics discussed in the paper were presented using a developed application in LabVIEW. The paper discusses the topic of measurement of direct voltages in the presence of strong electromagnetic interferences. These problems are frequently omitted or hardly emphasized. It presents a suitable measuring system, a virtual measuring instrument created in the LabVIEW environment, and the results of tests carried out for an example NI PCI-6221 data acquisition board. The described approach can be applied also in other measurement situations.


2021 ◽  
Vol 21 (5) ◽  
pp. 123-135
Author(s):  
Mochao Pei ◽  
Hongru Li ◽  
He Yu

Abstract The performance of feature is essential to the degradation state identification for hydraulic pumps. The initial feature set extracted from the vibration signal of the hydraulic pump is often high-dimensional and contains redundant information, which undermines the effectiveness of the feature set. The novel three-stage feature fusion scheme proposed in this paper aims to enhance the performance of the original features extracted from the vibration signal. First, sparse local Fisher discriminant analysis (SLFDA) performs intra-set fusion within the two original feature sets, respectively. SLFDA has a good effect on samples with intra-class multimodality, and the feature set fused by it has obvious multivariate normal distribution characteristics, which is conducive to the next fusion. Second, our modified intra-class correlation analysis (MICA) is used to fuse two feature sets in the second stage. MICA is a CCA (Canonical correlation analysis) -based method. A new class matrix is used to modify the covariance matrix between two feature sets, which allows MICA to conveniently inherit the discriminating structure while fusing features. Finally, we propose a feature selection algorithm based on kernel local Fisher discriminant analysis (KLFDA) and kernel canonical correlation analysis (KCCA) to select the desired features. This algorithm based on Max-Relevance and Min-Redundancy (mRMR) framework solves the problem that CCA cannot properly evaluate the correlation between features and the class variable, as well as accurately evaluates the correlation among features. Based on the experimental data, the proposed method is compared with several popular methods, and the feature fusion methods used in some previous studies related to the fault diagnosis of rotating machinery are compared with it as well. The results show that the fusion effectiveness of our method is better than other methods, which obtains higher recognition accuracy.


Sign in / Sign up

Export Citation Format

Share Document