scholarly journals Abnormal restitution property of action potential duration and conduction delay in Brugada syndrome: both repolarization and depolarization abnormalities

EP Europace ◽  
2010 ◽  
Vol 12 (4) ◽  
pp. 544-552 ◽  
Author(s):  
N. Nishii ◽  
S. Nagase ◽  
H. Morita ◽  
K. F. Kusano ◽  
T. Namba ◽  
...  
2019 ◽  
Vol 26 (4) ◽  
pp. 94-106
Author(s):  
О. Е. Osadchii

Hypokalaemia is the most common electrolyte abnormality seen in cardiac patients, which represents a side effect of diuretic therapy or results from the overactivation of the renin-angiotensinaldosterone system and the sympathetic nervous system in heart failure. Hypokalaemia is known to contribute to an increased risk of ventricular arrhythmias whose mechanism is based on the dynamic interplay of the provocative trigger and the vulnerable substrate. A premature ectopic impulse acts as a provocative trigger, whereas the vulnerable substrate is created by the structural and functional myocardial changes that favour the impulse circulation within a closed conducting pathway, thus perpetuating the re-entrant activation. The premature ectopic impulse that serves as the initiating event for arrhythmia can be generated due to abnormal automaticity or triggered activity. Hypokalaemia facilitates abnormal automaticity by increasing the rate of spontaneous diastolic depolarisation in Purkinje fi bres, which then start to exhibit pacemaker activity that interferes with the regular activations set by the sinoatrial node. The triggered activity is attributable to the early and delayed afterdepolarisations in cardiac myocytes. The early afterdepolarisations are typically precipitated by an excessive lengthening of the cardiac action potential duration that results from the inhibition of the repolarising K+ currents in the setting of hypokalaemia. The delayed afterdepolarisations are related to calcium overload in cardiac cells, which is provoked by hypokalaemia via inhibition of the Na+-K+ ATPase on myocyte sarcolemma. This translates to the increased intracellular Na+ levels, which in turn activate the reverse mode of the Na+-Ca2+ exchange, leading to increased cytosolic Ca2+ concentration. With regard to creating a vulnerable substrate for re-entry, hypokalaemia is known to induce a non-uniform increase in the action potential duration in different myocardial regions, which amplifi es spatial heterogeneities in the recovery of ventricular excitability during the fi nal repolarisation phase. This sets favourable conditions for a unidirectional conduction block upon premature ectopic activation, which initiates the impulse propagation around a small area of refractory cardiac tissue. In addition, hypokalaemia slows cardiac conduction by inducing hyperpolarisation of the myocyte sarcolemma that results in markedly increased excitation threshold. The induced conduction delay in the re-entrant circuit then allows suffi cient time for recovery from refractoriness in the cardiac cells ahead of the excitation wavefront, which sustains re-entrant activation. The risk of ventricular tachyarrhythmia becomes particularly high when hypokalaemia is combined with the administration of cardiac glycosides or class III antiarrhythmic agents.


2020 ◽  
Author(s):  
Yue Zhu ◽  
Linlin Wang ◽  
Chang Cui ◽  
Shaojie Chen ◽  
Hongwu Chen ◽  
...  

Abstract Background: Brugada syndrome (BrS) is an autosomal dominant disorder that causes a high predisposition to sudden cardiac death. Several genes have been reported to be associated with BrS. Considering that the heterogeneity in clinical manifestations may result from genetic variations, the application of patient-specific induced pluripotent stem (iPS) cell-derived cardiomyocytes (CMs) may help to reveal cell phenotype characteristics resulting from different genetic backgrounds. The present study was to compare the structural and electrophysiological characteristics of sodium channel subunits with different genetic variations and evaluate the safety of quinidine for use with BrS patient-specific iPSC-derived cardiomyocytes.Methods: Two BrS patient-specific iPS cell lines were constructed that carried missense mutations in SCN5A and SCN1B. One iPS cell line from a healthy volunteer was used as a control. The differentiated cardiomyocytes from the three groups were evaluated by flow cytometry, immunofluorescence staining, electron microscopy, as well as calcium transient and patch clamp analyses to assess different pathological phenotypes. Finally, we evaluated the drug responses to varying concentrations of quinidine by measuring the action potential.Results: Compared to the control group, BrS-CMs showed a significant reduction in sodium current, prolonged action potential duration and varying degrees of decreased Vmax, but no structural difference was observed. After applying different concentrations of quinidine, the disease-specific groups and the control group had a downward trend in maximal upstroke velocity, resting membrane potential and action potential amplitude, and exhibited prolonged action potential duration without increasing incidence of arrhythmic events.Conclusion: Both patient-specific iPSC-CMs recapitulated the BrS phenotype at the cellular level. Although the SCN5A variation led to a markedly lower sodium current than what was observed with the SCN1B variation, their responses to quinidine were quite similar. The present study provides an advantageous platform for exploring disease mechanisms and evaluating drug safety in vitro.


Heart Rhythm ◽  
2007 ◽  
Vol 4 (8) ◽  
pp. 1087-1089 ◽  
Author(s):  
Sanjiv M. Narayan ◽  
Jason Kim ◽  
Charles Tate ◽  
Brett J. Berman

2000 ◽  
Vol 41 (4) ◽  
pp. 481-492
Author(s):  
Naohiko Takahashi ◽  
Morio Ito ◽  
Shuji Ishida ◽  
Takao Fujino ◽  
Mikiko Nakagawa ◽  
...  

2018 ◽  
Vol 114 (suppl_1) ◽  
pp. S120-S120
Author(s):  
L Sartiani ◽  
L Sartiani ◽  
M Cameli ◽  
L Dini ◽  
S Modillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document