scholarly journals THE GENETICS OF DOPA DECARBOXYLASE IN DROSOPHILA MELANOGASTER I. ISOLATION AND CHARACTERIZATION OF DEFICIENCIES THAT DELETE THE DOPA-DECARBOXYLASE-DOSAGE-SENSITIVE REGION AND THE α-METHYL-DOPA-HYPERSENSITIVE LOCUS

Genetics ◽  
1976 ◽  
Vol 84 (2) ◽  
pp. 267-285
Author(s):  
Theodore R F Wright ◽  
Ross B Hodgetts ◽  
Allen F Sherald

ABSTRACT A detailed cytogenetic investigation of 16 overlapping deficiencies in the 36C-40A region on the left arm of the second chromosome (2L) in Drosophila melanogaster is reported. These deficiencies permit a localization of both the dopa-decarboxylase-dosage-sensitive region and the α-methyl-dopa-hypersensitive locus, l(2)amd, to the same region, 37B10-37C7.

Genetics ◽  
1976 ◽  
Vol 84 (2) ◽  
pp. 287-310
Author(s):  
Theodore R F Wright ◽  
Glenn C Bewley ◽  
Allen F Sherald

ABSTRACT Of 84 lethals isolated over the dopa decarboxylase (DDC) deficiency Df(2L)50, 8 have been identified as DDC-deficient alleles on the basis of their effect on DDC activity when heterozygous over the CyO balancer chromosome with activities ranging from 28% to 53% of controls. Some of the Ddc-deficient alleles exhibit intracistronic complementation. Most of the complementing pairs of alleles are much reduced in viability, e.g. < 5% of expected, and express a common syndrome of mutant phenes which can reasonably be inferred to derive from inadequately sclerotinized cuticle. Individuals heterozygous for the noncomplementing allele, Ddcn7, over the 12-band DDC deficiency, Df(2L)130, die at the end of embryogenesis as unhatched larvae with unpigmented mouth parts. The Ddc alleles and the l(2)amd α-methyl dopa (αMD) hypersensitive alleles are both located within the 11 band region 37B10-C7. The l(2)amd locus is immediately to the right of hk(2-53.9).Ddc has been mapped within 0.004 Map Units to the right of l(2)amd with a maximum estimated recombination frequency of 0.01%. None of the Ddc/CyO strains are sensitive to the dietary administration of α-methyl dopa (αMD), and complementation occurs between the Ddc deficient alleles and the l(2)amd alleles both on the basis of viability and DDC activity. No effect on DDC by the amd alleles has been found to date. Even in the complementing heterozygote, amdH1/amdH89, the level of activity, thermostability, and in vitro αMD inhibition of DDC remains unaffected. Although no biochemical phene has yet been established for the αMD hypersensitive amd alleles, it seems likely that the two groups of mutants are functionally related.


1981 ◽  
Vol 1 (6) ◽  
pp. 475-485
Author(s):  
J Hirsh ◽  
N Davidson

We have isolated chromosomal deoxyribonucleic acid clones containing the Drosophila dopa decarboxylase gene. We describe an isolation procedure which can be applied to other nonabundantly expressed Drosophila genes. The dopa decarboxylase gene lies within or very near polytene chromosome band 37C1-2. The gene is interrupted by at least one intron, and the primary mode of regulation is pretranslational. At least two additional sequences hybridized by in vivo ribonucleic acid-derived probes are found within a 35-kilobase region surrounding the gene. The developmental profile of ribonucleic acid transcribed from one of these regions differs from that of the dopa decarboxylase transcript.


1981 ◽  
Vol 1 (6) ◽  
pp. 475-485 ◽  
Author(s):  
J Hirsh ◽  
N Davidson

We have isolated chromosomal deoxyribonucleic acid clones containing the Drosophila dopa decarboxylase gene. We describe an isolation procedure which can be applied to other nonabundantly expressed Drosophila genes. The dopa decarboxylase gene lies within or very near polytene chromosome band 37C1-2. The gene is interrupted by at least one intron, and the primary mode of regulation is pretranslational. At least two additional sequences hybridized by in vivo ribonucleic acid-derived probes are found within a 35-kilobase region surrounding the gene. The developmental profile of ribonucleic acid transcribed from one of these regions differs from that of the dopa decarboxylase transcript.


1987 ◽  
Vol 65 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Michael Goldenthal ◽  
James T. Nishiura

A DNA-dependent RNA polymerase was solubilized from sucrose gradient isolated, DNase-treated mitochrondria of Drosophila melanogaster. The isolated mitochondria were not detectably contaminated with nuclear DNA as shown by CsCl gradient centrifugation and polylysine Kieselguhr chromatography. The detergent-solubilized RNA polymerase was sensitive to rifampicin, resistant to α-amanitin, had an apparent molecular mass of about 60 kilodaltons, and displayed a tendency to aggregate, both in crude extracts or when purified. The mitochondrial RNA polymerase could be distinguished from nuclear RNA polymerases on the basis of size, salt optima, rifampicin sensitivity, and α-amanitin resistance.


Sign in / Sign up

Export Citation Format

Share Document