sex lethal
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 9)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Vanessa L Bauer DuMont ◽  
Simone L White ◽  
Daniel Zinshteyn ◽  
Charles F Aquadro

Abstract Sex-lethal (Sxl) is the sex determination switch in Drosophila, and also plays a critical role in germ-line stem cell (GSC) daughter differentiation in Drosophila melanogaster. Three female-sterile alleles at Sxl in Drosophila melanogaster were previously shown to genetically interact to varying degrees with the maternally inherited endosymbiont Wolbachia pipientis. Given this genetic interaction and W. pipientis’ ability to manipulate reproduction in Drosophila, we carried out a careful study of both the population genetics (within four Drosophila species) and molecular evolutionary analysis (across 20 Drosophila species) of Sxl. Consistent with earlier studies, we find that selective constraint has played a prominent role in Sxl’s molecular evolution within Drosophila, but we also observe patterns that suggest both episodic bursts of protein evolution and recent positive selection at Sxl. The episodic nature of Sxl’s protein evolution is discussed in light of its genetic interaction with W. pipientis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250592
Author(s):  
Hiren Banerjee ◽  
Ravinder Singh

Background Downstream targets for a large number of RNA-binding proteins remain to be identified. The Drosophila master sex-switch protein Sex-lethal (SXL) is an RNA-binding protein that controls splicing, polyadenylation, or translation of certain mRNAs to mediate female-specific sexual differentiation. Whereas some targets of SXL are known, previous studies indicate that additional targets of SXL have escaped genetic screens. Methodology/Principal findings Here, we have used an alternative molecular approach of GEnomic Selective Enrichment of Ligands by Exponential enrichment (GESELEX) using both the genomic DNA and cDNA pools from several Drosophila developmental stages to identify new potential targets of SXL. Our systematic analysis provides a comprehensive view of the Drosophila transcriptome for potential SXL-binding sites. Conclusion/Significance We have successfully identified new SXL-binding sites in the Drosophila transcriptome. We discuss the significance of our analysis and that the newly identified binding sites and sequences could serve as a useful resource for the research community. This approach should also be applicable to other RNA-binding proteins for which downstream targets are unknown.


2020 ◽  
Author(s):  
Binta Jalloh ◽  
J. Christopher Rounds ◽  
Brianna E. Brown ◽  
Isaac J. Kremsky ◽  
Ayan Banerjee ◽  
...  

AbstractThe Drosophila polyadenosine RNA binding protein Nab2, which is orthologous to a human protein lost in a form of inherited intellectual disability, controls axon projection, locomotion, and memory. Here we define an unexpectedly specific role for Nab2 in regulating splicing of ~150 exons/introns in the head transcriptome and link the most prominent of these, female retention of a male-specific exon in the sex determination factor Sex-lethal (Sxl), to a role in m6A-dependent mRNA splicing. Genetic evidence indicates that aberrant Sxl splicing underlies multiple phenotypes in Nab2 mutant females. At a molecular level, Nab2 associates with Sxl pre-mRNA and ensures proper female-specific splicing by preventing m6A hypermethylation by Mettl3 methyltransferase. Consistent with these results, reducing Mettl3 expression rescues developmental, behavioral and neuroanatomical phenotypes in Nab2 mutants. Overall these data identify Nab2 as a required regulator of m6A-regulated Sxl splicing and imply a broad link between Nab2 and Mettl3-regulated brain RNAs.


Author(s):  
Raghav Goyal ◽  
Ellen Baxter ◽  
Mark Van Doren

ABSTRACTIn Drosophila, sex determination in somatic cells has been well-studied and is under the control of the switch gene Sex lethal (Sxl), which is activated in females by the presence of two X chromosomes. Though sex determination is regulated differently in the germline versus the soma, Sxl is also necessary and sufficient for the female identity in germ cells. Loss of Sxl function in the germline results in ovarian germline tumors, a characteristic of male germ cells developing in a female soma. Further, XY (male) germ cells expressing Sxl are able to produce eggs when transplanted into XX (female) somatic gonads, demonstrating that Sxl is also sufficient for female sexual identity in the germline. As in the soma, the presence of two X chromosomes is sufficient to activate Sxl in the germline, but the mechanism for “counting” X chromosomes in the germline is thought to be different from the soma. Here we have explored this mechanism at both cis- and trans-levels. Our data support the model that the Sxl “establishment” promoter (SxlPE) is activated in a female-specific manner in the germline, as in the soma, but that the timing of SxlPE activation, and the DNA elements that regulate SxlPE are different from those in the soma. Nevertheless, we find that the X chromosome-encoded gene sisterless A (sisA), which helps activate Sxl in the soma, is also essential for Sxl activation in the germline. Loss of sisA function leads to loss of Sxl expression in the germline, and to ovarian tumors and germline loss. These defects can be rescued by the expression of Sxl, demonstrating that sisA lies upstream of Sxl in germline sex determination. We conclude that sisA acts as an X chromosome counting element in both the soma and the germline, but that additional factors that ensure robust, female-specific expression of Sxl in the germline remain to be discovered.


PLoS Genetics ◽  
2019 ◽  
Vol 15 (7) ◽  
pp. e1007617 ◽  
Author(s):  
Shekerah Primus ◽  
Caitlin Pozmanter ◽  
Kelly Baxter ◽  
Mark Van Doren

2019 ◽  
Vol 116 (21) ◽  
pp. 10412-10417 ◽  
Author(s):  
Hiroki Sakai ◽  
Hiroyuki Oshima ◽  
Kodai Yuri ◽  
Hiroki Gotoh ◽  
Takaaki Daimon ◽  
...  

Sex is determined by diverse mechanisms and master sex-determination genes are highly divergent, even among closely related species. Therefore, it is possible that homologs of master sex-determination genes might have alternative functions in different species. Herein, we focused on Sex-lethal (Sxl), which is the master sex-determination gene in Drosophila melanogaster and is necessary for female germline development. It has been widely shown that the sex-determination function of Sxl in Drosophilidae species is not conserved in other insects of different orders. We investigated the function of Sxl in the lepidopteran insect Bombyx mori. In lepidopteran insects (moths and butterflies), spermatogenesis results in two different types of sperm: nucleated fertile eupyrene sperm and anucleate nonfertile parasperm, also known as apyrene sperm. Genetic analyses using Sxl mutants revealed that the gene is indispensable for proper morphogenesis of apyrene sperm. Similarly, our analyses using Sxl mutants clearly demonstrate that apyrene sperm are necessary for eupyrene sperm migration from the bursa copulatrix to the spermatheca. Therefore, apyrene sperm is necessary for successful fertilization of eupyrene sperm in B. mori. Although Sxl is essential for oogenesis in D. melanogaster, it also plays important roles in spermatogenesis in B. mori. Therefore, the ancestral function of Sxl might be related to germline development.


2018 ◽  
Vol 47 (5) ◽  
pp. 2276-2288 ◽  
Author(s):  
Rebecca Moschall ◽  
Mathias Rass ◽  
Oliver Rossbach ◽  
Gerhard Lehmann ◽  
Lars Kullmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document