A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior

2019 ◽  
Vol 219 (3) ◽  
pp. 1989-2012 ◽  
Author(s):  
Thibaut Astic ◽  
Douglas W Oldenburg

SUMMARY We propose a new framework for incorporating petrophysical and geological information into voxel-based geophysical inversion. By developing the geophysical inverse problem from a probabilistic perspective, we redesign the objective function and the iteration steps as a suite of cyclic optimization problems in which three separate MAP optimization problems are solved using geophysical, petrophysical and geological data, respectively. By quantitatively linking these data into a single framework, we recover a final inverted model that reproduces the observed, or desired, petrophysical and geological features while fitting the geophysical data. To achieve our goal we replace the Gaussian prior, used in the Tikhonov inversion approach, by a Gaussian mixture model. After each geophysical model update, the mixture parameters (means, variances and proportions) are determined by the geophysical model and the expected characteristics of the lithologies through another optimization process using the expectation–maximization algorithm. We then classify the model cells into rock units according to the petrophysical and geological information. These two additional steps over the petrophysical and geological data result in a dynamic update of the reference model and associated weights and guide the inversion towards reproducing the expected petrophysical and geological characteristics. The resulting geophysical objective function does not require extra terms to include the additional petrophysical and geological information; this is an important distinction between our work and previous frameworks that carry out joint geophysical and petrophysical data inversion. We highlight different capabilities of our methodology by inverting magnetotelluric and direct-current resistivity data in 1-D and 2-D, respectively. Finally, we apply our framework to inverting airborne frequency domain data, acquired in Australia, for the detection and characterization of saline contamination of freshwater.

2020 ◽  
Vol 224 (1) ◽  
pp. 40-68 ◽  
Author(s):  
Thibaut Astic ◽  
Lindsey J Heagy ◽  
Douglas W Oldenburg

SUMMARY In a previous paper, we introduced a framework for carrying out petrophysically and geologically guided geophysical inversions. In that framework, petrophysical and geological information is modelled with a Gaussian mixture model (GMM). In the inversion, the GMM serves as a prior for the geophysical model. The formulation and applications were confined to problems in which a single physical property model was sought, and a single geophysical data set was available. In this paper, we extend that framework to jointly invert multiple geophysical data sets that depend on multiple physical properties. The petrophysical and geological information is used to couple geophysical surveys that, otherwise, rely on independent physics. This requires advancements in two areas. First, an extension from a univariate to a multivariate analysis of the petrophysical data, and their inclusion within the inverse problem, is necessary. Secondly, we address the practical issues of simultaneously inverting data from multiple surveys and finding a solution that acceptably reproduces each one, along with the petrophysical and geological information. To illustrate the efficacy of our approach and the advantages of carrying out multi-physics inversions coupled with petrophysical and geological information, we invert synthetic gravity and magnetic data associated with a kimberlite deposit. The kimberlite pipe contains two distinct facies embedded in a host rock. Inverting the data sets individually, even with petrophysical information, leads to a binary geological model: background or undetermined kimberlite. A multi-physics inversion, with petrophysical information, differentiates between the two main kimberlite facies of the pipe. Through this example, we also highlight the capabilities of our framework to work with interpretive geological assumptions when minimal quantitative information is available. In those cases, the dynamic updates of the GMM allow us to perform multi-physics inversions by learning a petrophysical model.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2391 ◽  
Author(s):  
Hang Ren ◽  
Taotao Hu

Since the fuzzy local information C-means (FLICM) segmentation algorithm cannot take into account the impact of different features on clustering segmentation results, a local fuzzy clustering segmentation algorithm based on a feature selection Gaussian mixture model was proposed. First, the constraints of the membership degree on the spatial distance were added to the local information function. Second, the feature saliency was introduced into the objective function. By using the Lagrange multiplier method, the optimal expression of the objective function was solved. Neighborhood weighting information was added to the iteration expression of the classification membership degree to obtain a local feature selection based on feature selection. Each of the improved FLICM algorithm, the fuzzy C-means with spatial constraints (FCM_S) algorithm, and the original FLICM algorithm were then used to cluster and segment the interference images of Gaussian noise, salt-and-pepper noise, multiplicative noise, and mixed noise. The performances of the peak signal-to-noise ratio and error rate of the segmentation results were compared with each other. At the same time, the iteration time and number of iterations used to converge the objective function of the algorithm were compared. In summary, the improved algorithm significantly improved the ability of image noise suppression under strong noise interference, improved the efficiency of operation, facilitated remote sensing image capture under strong noise interference, and promoted the development of a robust anti-noise fuzzy clustering algorithm.


2018 ◽  
Vol 30 (4) ◽  
pp. 642
Author(s):  
Guichao Lin ◽  
Yunchao Tang ◽  
Xiangjun Zou ◽  
Qing Zhang ◽  
Xiaojie Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document