scholarly journals Systematic genetic interaction studies identify histone demethylase Utx as potential target for ameliorating Huntington’s disease

2018 ◽  
Vol 27 (4) ◽  
pp. 759-759 ◽  
Author(s):  
Wan Song ◽  
Nóra Zsindely ◽  
Anikó Faragó ◽  
J Lawrence Marsh ◽  
László Bodai
2017 ◽  
Author(s):  
Wan Song ◽  
Nóra Zsindely ◽  
Anikó Faragó ◽  
J. Lawrence Marsh ◽  
László Bodai

ABSTRACTHuntington’s Disease (HD) is a dominantly inherited neurodegenerative disease caused by alterations in the huntingtin gene (htt). Transcriptional dysregulation is an early event in HD progression. Protein acetylation and methylation particularly on histones regulates chromatin structure thereby preventing or facilitating transcription. Although protein acetylation has been found to affect HD symptoms, little is known about the potential role of protein methylation in HD pathology. In recent years, a series of proteins have been described that are responsible for methylating and demethylating histones as well as other proteins. We carried out systematic genetic interaction studies testing lysine and arginine methylases and demethylases in a Drosophila melanogaster HD model. We found that modulating methylation enzymes that typically affect histone positions H3K4, H3K36 or H3K79 had varying effects on HD pathology while modulating ones that typically affect constitutive heterochromatin marks at H3K9 and H4K20 generally had limited impact on HD pathology. In contrast, modulating enzymes acting on the facultative heterochromatin mark at H3K27 had specific effects on HD pathology, with reduction of the demethylase Utx rescuing HTT induced pathology while reducing PRC2 complex core methylase components led to more aggressive pathology. Further exploration of the mechanism underlying the methylation-specific interactions suggest that these lysine and arginine methylases and demethylases are likely exerting their influence through non-histone targets. These results highlight a novel therapeutic approach for HD in the form of Utx inhibition.


2017 ◽  
Vol 27 (4) ◽  
pp. 649-666 ◽  
Author(s):  
Wan Song ◽  
Nóra Zsindely ◽  
Anikó Faragó ◽  
J Lawrence Marsh ◽  
László Bodai

Abstract Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by alterations in the huntingtin gene (htt). Transcriptional dysregulation is an early event in HD progression. Protein acetylation and methylation particularly on histones regulates chromatin structure thereby preventing or facilitating transcription. Although protein acetylation has been found to affect HD symptoms, little is known about the potential role of protein methylation in HD pathology. In recent years, a series of proteins have been described that are responsible for methylating and demethylating histones as well as other proteins. We carried out systematic genetic interaction studies testing lysine and arginine methylases and demethylases in a Drosophila melanogaster HD model. We found that modulating methylation enzymes that typically affect histone positions H3K4, H3K36 or H3K79 had varying effects on HD pathology while modulating ones that typically affect constitutive heterochromatin marks at H3K9 and H4K20 generally had limited impact on HD pathology. In contrast, modulating enzymes acting on the facultative heterochromatin mark at H3K27 had specific effects on HD pathology, with reduction of the demethylase Utx rescuing HTT-induced pathology while reducing Polycomb Repressive Complex2 core methylase components led to more aggressive pathology. Further exploration of the mechanism underlying the methylation-specific interactions suggest that these lysine and arginine methylases and demethylases are likely exerting their influence through non-histone targets. These results highlight a novel therapeutic approach for HD in the form of Utx inhibition.


2014 ◽  
Vol 9 (3) ◽  
pp. 289-293
Author(s):  
Fabiola M Ribeiro ◽  
Juliana G Doria ◽  
Stephen SG Ferguson

2017 ◽  
Vol 31 (S1) ◽  
Author(s):  
Sai Srinivas Panapakkam Giridharan ◽  
Ismael Al‐Ramahi ◽  
Junya Hasegawa ◽  
Nathanial Safren ◽  
Samarjit Patnaik ◽  
...  

2020 ◽  
Vol 29 (18) ◽  
pp. 3044-3053 ◽  
Author(s):  
Jacob M Loupe ◽  
Ricardo Mouro Pinto ◽  
Kyung-Hee Kim ◽  
Tammy Gillis ◽  
Jayalakshmi S Mysore ◽  
...  

Abstract Recent genome-wide association studies of age-at-onset in Huntington’s disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.


Sign in / Sign up

Export Citation Format

Share Document