repeat expansion
Recently Published Documents


TOTAL DOCUMENTS

911
(FIVE YEARS 279)

H-INDEX

75
(FIVE YEARS 13)

Author(s):  
Giulia del Rosso ◽  
Yari Carlomagno ◽  
Tiffany W. Todd ◽  
Caroline Y. Jones ◽  
Mercedes Prudencio ◽  
...  

The aberrant translation of a repeat expansion in chromosome 9 open reading frame 72 (C9orf72), the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), results in the accumulation of toxic dipeptide repeat (DPR) proteins in the central nervous system We have found that, among the sense DPR proteins, HDAC6 specifically interacts with the poly (GA) and co-localizes with inclusions in both patient tissue and a mouse model of this disease (c9FTD/ALS). Overexpression of HDAC6 increased poly (GA) levels in cultured cells independently of HDAC6 deacetylase activity, suggesting that HDAC6 can modulate poly (GA) pathology through a mechanism that depends upon their physical interaction. Moreover, decreasing HDAC6 expression by stereotaxic injection of antisense oligonucleotides significantly reduced the number of poly (GA) inclusions in c9FTD/ALS mice. These findings suggest that pharmacologically reducing HDAC6 levels could be of therapeutic value in c9FTD/ALS.


Author(s):  
Yuzo Fujino ◽  
Yoshitaka Nagai

Expanded short tandem repeats in the genome cause various monogenic diseases, particularly neurological disorders. Since the discovery of a CGG repeat expansion in the FMR1 gene in 1991, more than 40 repeat expansion diseases have been identified to date. In the coding repeat expansion diseases, in which the expanded repeat sequence is located in the coding regions of genes, the toxicity of repeat polypeptides, particularly misfolding and aggregation of proteins containing an expanded polyglutamine tract, have been the focus of investigation. On the other hand, in the non-coding repeat expansion diseases, in which the expanded repeat sequence is located in introns or untranslated regions, the toxicity of repeat RNAs has been the focus of investigation. Recently, these repeat RNAs were demonstrated to be translated into repeat polypeptides by the novel mechanism of repeat-associated non-AUG translation, which has extended the research direction of the pathological mechanisms of this disease entity to include polypeptide toxicity. Thus, a common pathogenesis has been suggested for both coding and non-coding repeat expansion diseases. In this review, we briefly outline the major pathogenic mechanisms of repeat expansion diseases, including a loss-of-function mechanism caused by repeat expansion, repeat RNA toxicity caused by RNA foci formation and protein sequestration, and toxicity by repeat polypeptides. We also discuss perturbation of the physiological liquid-liquid phase separation state caused by these repeat RNAs and repeat polypeptides, as well as potential therapeutic approaches against repeat expansion diseases.


2021 ◽  
Author(s):  
Katherine M Wilson ◽  
Eszter Katona ◽  
Idoia Glaria ◽  
Imogen J Swift ◽  
Aitana Sogorb-Esteve ◽  
...  

A GGGGCC repeat expansion in the C9orf72 gene is the most common cause of genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). As potential therapies targeting the repeat expansion are now entering clinical trials, sensitive biomarker assays of target engagement are urgently required. We utilised the single molecule array (Simoa) platform to develop an immunoassay for measuring poly(GP) dipeptide repeat proteins (DPRs) generated by the repeat expansion in CSF of people with C9orf72-associated FTD/ALS. We show the assay to be highly sensitive and robust, passing extensive qualification criteria including low intra- and inter-plate variability, a high precision and accuracy in measuring both calibrators and samples, dilutional parallelism, tolerance to sample and standard freeze-thaw and no haemoglobin interference. We used this assay to measure poly(GP) DPRs in the CSF of samples collected through the Genetic FTD Initiative. We found it had 100% specificity and 100% sensitivity and a large window for detecting target engagement, as the C9orf72 CSF sample with the lowest poly(GP) signal had 8-fold higher signal than controls and on average values from C9orf72 samples were 38-fold higher than controls, which all fell below the lower limit of quantification of the assay. These data indicate that a Simoa-based poly(GP) DPR assay is suitable for use in clinical trials to determine target engagement of therapeutics aimed at reducing C9orf72 repeat-containing transcripts.


2021 ◽  
Vol 15 ◽  
Author(s):  
Iris-Stefania Pasniceanu ◽  
Manpreet Singh Atwal ◽  
Cleide Dos Santos Souza ◽  
Laura Ferraiuolo ◽  
Matthew R. Livesey

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.


2021 ◽  
Vol 22 (24) ◽  
pp. 13225
Author(s):  
Xiaomeng Xing ◽  
Anjani Kumari ◽  
Jake Brown ◽  
John David Brook

Myotonic dystrophy is the most common muscular dystrophy in adults. It consists of two forms: type 1 (DM1) and type 2 (DM2). DM1 is associated with a trinucleotide repeat expansion mutation, which is transcribed but not translated into protein. The mutant RNA remains in the nucleus, which leads to a series of downstream abnormalities. DM1 is widely considered to be an RNA-based disorder. Thus, we consider three areas of the RNA pathway that may offer targeting opportunities to disrupt the production, stability, and degradation of the mutant RNA.


2021 ◽  
Vol 33 (4) ◽  
pp. 311-318
Author(s):  
Lorenz Peters ◽  
Christel Depienne ◽  
Stephan Klebe

Abstract Familial adult myoclonic epilepsy (FAME) is a rare autosomal dominant disorder characterized by myoclonus and seizures. The genetic variant underlying FAME is an intronic repeat expansion composed of two different pentamers: an expanded TTTTA, which is the motif originally present at the locus, and an insertion of TTTCA repeats, which is usually located at the 3′ end and likely corresponds to the pathogenic part of the expansion. This repeat expansion has been identified so far in six genes located on different chromosomes, which remarkably encode proteins with distinct cellular localizations and functions. Although the exact pathophysiological mechanisms remain to be clarified, it is likely that FAME repeat expansions lead to disease independently of the gene where they occur. We herein review the clinical and molecular characteristics of this singular genetic disorder, which interestingly shares clinical features with other more common neurological disorders whose etiology remains mainly unsolved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir. A. Ozcan ◽  
Layla T. Ghaffari ◽  
Aaron R. Haeusler

AbstractA nucleotide repeat expansion (NRE), (G4C2)n, located in a classically noncoding region of C9orf72 (C9), is the most common genetic mutation associated with ALS/FTD. There is increasing evidence that nucleic acid structures formed by the C9-NRE may both contribute to ALS/FTD, and serve as therapeutic targets, but there is limited characterization of these nucleic acid structures under physiologically and disease relevant conditions. Here we show in vitro that the C9-NRE DNA can form both parallel and antiparallel DNA G-quadruplex (GQ) topological structures and that the structural preference of these DNA GQs can be dependent on the molecular crowding conditions. Additionally, 5-methylcytosine DNA hypermethylation, which is observed in the C9-NRE locus in some patients, has minimal effects on GQ topological preferences. Finally, molecular dynamic simulations of methylated and nonmethylated GQ structures support in vitro data showing that DNA GQ structures formed by the C9-NRE DNA are stable, with structural fluctuations limited to the cytosine-containing loop regions. These findings provide new insight into the structural polymorphic preferences and stability of DNA GQs formed by the C9-NRE in both the methylated and nonmethylated states, as well as reveal important features to guide the development of upstream therapeutic approaches to potentially attenuate C9-NRE-linked diseases.


2021 ◽  
Vol 33 (4) ◽  
pp. 319-324
Author(s):  
Jelena Pozojevic ◽  
Joseph Neos Cruz ◽  
Ana Westenberger

Abstract X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative movement disorder, caused by a founder retrotransposon insertion in an intron of the TAF1 gene. This insertion contains a polymorphic hexanucleotide repeat (CCCTCT)n, the length of which inversely correlates with the age at disease onset (AAO) and other clinical parameters, aligning XDP with repeat expansion disorders. Nevertheless, many other pathogenic mechanisms are conceivably at play in XDP, indicating that in contrast to other repeat disorders, the (CCCTCT)n repeat may not be the actual (or only) disease cause. Here, we summarize and discuss genetic and molecular aspects of XDP, highlighting the role of the hexanucleotide repeat in age-related disease penetrance and expressivity.


Author(s):  
Hugo Kermorvant ◽  
Rabab Debs ◽  
Thierry Maisonobe ◽  
Vincent Huin ◽  
Tanya Stojkovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document