scholarly journals Systematic genetic interaction studies identify histone demethylase Utx as potential target for ameliorating Huntington’s disease

2017 ◽  
Vol 27 (4) ◽  
pp. 649-666 ◽  
Author(s):  
Wan Song ◽  
Nóra Zsindely ◽  
Anikó Faragó ◽  
J Lawrence Marsh ◽  
László Bodai

Abstract Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by alterations in the huntingtin gene (htt). Transcriptional dysregulation is an early event in HD progression. Protein acetylation and methylation particularly on histones regulates chromatin structure thereby preventing or facilitating transcription. Although protein acetylation has been found to affect HD symptoms, little is known about the potential role of protein methylation in HD pathology. In recent years, a series of proteins have been described that are responsible for methylating and demethylating histones as well as other proteins. We carried out systematic genetic interaction studies testing lysine and arginine methylases and demethylases in a Drosophila melanogaster HD model. We found that modulating methylation enzymes that typically affect histone positions H3K4, H3K36 or H3K79 had varying effects on HD pathology while modulating ones that typically affect constitutive heterochromatin marks at H3K9 and H4K20 generally had limited impact on HD pathology. In contrast, modulating enzymes acting on the facultative heterochromatin mark at H3K27 had specific effects on HD pathology, with reduction of the demethylase Utx rescuing HTT-induced pathology while reducing Polycomb Repressive Complex2 core methylase components led to more aggressive pathology. Further exploration of the mechanism underlying the methylation-specific interactions suggest that these lysine and arginine methylases and demethylases are likely exerting their influence through non-histone targets. These results highlight a novel therapeutic approach for HD in the form of Utx inhibition.

2017 ◽  
Author(s):  
Wan Song ◽  
Nóra Zsindely ◽  
Anikó Faragó ◽  
J. Lawrence Marsh ◽  
László Bodai

ABSTRACTHuntington’s Disease (HD) is a dominantly inherited neurodegenerative disease caused by alterations in the huntingtin gene (htt). Transcriptional dysregulation is an early event in HD progression. Protein acetylation and methylation particularly on histones regulates chromatin structure thereby preventing or facilitating transcription. Although protein acetylation has been found to affect HD symptoms, little is known about the potential role of protein methylation in HD pathology. In recent years, a series of proteins have been described that are responsible for methylating and demethylating histones as well as other proteins. We carried out systematic genetic interaction studies testing lysine and arginine methylases and demethylases in a Drosophila melanogaster HD model. We found that modulating methylation enzymes that typically affect histone positions H3K4, H3K36 or H3K79 had varying effects on HD pathology while modulating ones that typically affect constitutive heterochromatin marks at H3K9 and H4K20 generally had limited impact on HD pathology. In contrast, modulating enzymes acting on the facultative heterochromatin mark at H3K27 had specific effects on HD pathology, with reduction of the demethylase Utx rescuing HTT induced pathology while reducing PRC2 complex core methylase components led to more aggressive pathology. Further exploration of the mechanism underlying the methylation-specific interactions suggest that these lysine and arginine methylases and demethylases are likely exerting their influence through non-histone targets. These results highlight a novel therapeutic approach for HD in the form of Utx inhibition.


2004 ◽  
Vol 14 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Birgit Zucker ◽  
Ruth Luthi-Carter ◽  
Jibrin A. Kama ◽  
Anthone W. Dunah ◽  
Edward A. Stern ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Emily R. Fisher ◽  
Natalia P. Rocha ◽  
Diego A. Morales-Scheihing ◽  
Venugopal Reddy Venna ◽  
Erin E. Furr-Stimming ◽  
...  

The role of oxytocin (OT) in social cognition of patients with Huntington’s disease (HD) has been studied, but its impact on executive functioning has not been explored yet. Healthy controls, premanifest HD, and manifest HD participants underwent executive functioning assessment and OT plasma measurement. There were no significant group differences in plasma OT levels. Higher OT levels were associated with better executive functioning in premanifest HD participants. Our findings revealed an association between OT levels and depressive symptoms in premanifest and manifest HD participants. The potential role of OT in HD deserves further investigation.


2014 ◽  
Vol 13 (6) ◽  
pp. 1096-1119 ◽  
Author(s):  
Begona Escribano ◽  
Ana Colin-Gonzalez ◽  
Abel Santamaria ◽  
Isaac Tunez

2003 ◽  
Vol 12 (3) ◽  
pp. 257-264 ◽  
Author(s):  
R. A. Fricker-Gates ◽  
R. Smith ◽  
J. Muhith ◽  
S. B. Dunnett

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carmen N. Hernández-Candia ◽  
Sarah Pearce ◽  
Chandra L. Tucker

AbstractDynamic membraneless compartments formed by protein condensates have multifunctional roles in cellular biology. Tools that inducibly trigger condensate formation have been useful for exploring their cellular function, however, there are few tools that provide inducible control over condensate disruption. To address this need we developed DisCo (Disassembly of Condensates), which relies on the use of chemical dimerizers to inducibly recruit a ligand to the condensate-forming protein, triggering condensate dissociation. We demonstrate use of DisCo to disrupt condensates of FUS, associated with amyotrophic lateral sclerosis, and to prevent formation of polyglutamine-containing huntingtin condensates, associated with Huntington’s disease. In addition, we combined DisCo with a tool to induce condensates with light, CRY2olig, achieving bidirectional control of condensate formation and disassembly using orthogonal inputs of light and rapamycin. Our results demonstrate a method to manipulate condensate states that will have broad utility, enabling better understanding of the biological role of condensates in health and disease.


Sign in / Sign up

Export Citation Format

Share Document