striatal neurons
Recently Published Documents


TOTAL DOCUMENTS

1003
(FIVE YEARS 150)

H-INDEX

92
(FIVE YEARS 6)

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 169
Author(s):  
Patrick D. Skelton ◽  
Valerie Tokars ◽  
Loukia Parisiadou

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease with a similar clinical presentation and progression to idiopathic Parkinson’s disease, and common variation is linked to disease risk. Recapitulation of the genotype in rodent models causes abnormal dopamine release and increases the susceptibility of dopaminergic neurons to insults, making LRRK2 a valuable model for understanding the pathobiology of Parkinson’s disease. It is also a promising druggable target with targeted therapies currently in development. LRRK2 mRNA and protein expression in the brain is highly variable across regions and cellular identities. A growing body of work has demonstrated that pathogenic LRRK2 mutations disrupt striatal synapses before the onset of overt neurodegeneration. Several substrates and interactors of LRRK2 have been identified to potentially mediate these pre-neurodegenerative changes in a cell-type-specific manner. This review discusses the effects of pathogenic LRRK2 mutations in striatal neurons, including cell-type-specific and pathway-specific alterations. It also highlights several LRRK2 effectors that could mediate the alterations to striatal function, including Rabs and protein kinase A. The lessons learned from improving our understanding of the pathogenic effects of LRRK2 mutations in striatal neurons will be applicable to both dissecting the cell-type specificity of LRRK2 function in the transcriptionally diverse subtypes of dopaminergic neurons and also increasing our understanding of basal ganglia development and biology. Finally, it will inform the development of therapeutics for Parkinson’s disease.


2022 ◽  
Vol 23 (1) ◽  
pp. 571
Author(s):  
Jaegeun Jang ◽  
Ahreum Hong ◽  
Youngcheul Chung ◽  
Byungkwan Jin

The present study investigated the effects of interleukin (IL)-4 on striatal neurons in lipopolysaccharide (LPS)-injected rat striatum in vivo. Either LPS or PBS as a control was unilaterally injected into the striatum, and brain tissues were processed for immunohistochemical and Nissl staining or for hydroethidine histochemistry at the indicated time points after LPS injection. Analysis by NeuN and Nissl immunohistochemical staining showed a significant loss of striatal neurons at 1, 3, and 7 days post LPS. In parallel, IL-4 immunoreactivity was upregulated as early as 1 day, reached a peak at 3 days, and was sustained up to 7 days post LPS. Increased levels of IL-4 immunoreactivity were exclusively detected in microglia/macrophages, but not in neurons nor astrocytes. The neutralizing antibody (NA) for IL-4 significantly protects striatal neurons against LPS-induced neurotoxicity in vivo. Accompanying neuroprotection, IL-4NA inhibited activation of microglia/macrophages, production of reactive oxygen species (ROS), ROS-derived oxidative damage and nitrosative stress, and produced polarization of microglia/macrophages shifted from M1 to M2. These results suggest that endogenous IL-4 expressed in LPS-activated microglia/macrophages contributes to striatal neurodegeneration in which oxidative/nitrosative stress and M1/M2 polarization are implicated.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 101
Author(s):  
Gubbi Govindaiah ◽  
Rong-Jian Liu ◽  
Yanyan Wang

The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in two isoforms: D2L and D2S. Here, we assessed whether alterations in the D2L and D2S expression levels affect neuronal excitability and synaptic function in striatal neurons. We observed that quinpirole inhibited the firing rate of all three types of striatal neurons in wild-type (WT) mice. However, in D2L knockout (KO) mice, quinpirole enhanced the excitability of ChIs, lost influence on spike firing of MSNs, and remained inhibitory effect on spike firing of FSIs. Additionally, we showed mIPSC frequency (but not mIPSC amplitude) was reduced in ChIs from D2L KO mice compared with WT mice, suggesting spontaneous GABA release is reduced at GABAergic terminals onto ChIs in D2L KO mice. Furthermore, we found D2L deficiency resulted in reduced dendritic spine density in ChIs, suggesting D2L activation plays a role in the formation/maintenance of dendritic spines of ChIs. These findings suggest new molecular and cellular mechanisms for causing ChIs abnormality seen in Parkinson’s disease or drug-induced dyskinesias.


2022 ◽  
Author(s):  
Hui Dong ◽  
Ze-Ka Chen ◽  
Han Guo ◽  
Xiang-Shan Yuan ◽  
Cheng-Wei Liu ◽  
...  

2021 ◽  
Author(s):  
Jinyong Zhang ◽  
Ryan N Hughes ◽  
Namsoo Kim ◽  
Isabella P Fallon ◽  
Konstantin I bakhurin ◽  
...  

While in vivo calcium imaging makes it possible to record activity in defined neuronal populations with cellular resolution, optogenetics allows selective manipulation of neural activity. Recently, these two tools have been combined to stimulate and record neural activity at the same time, but current approaches often rely on two-photon microscopes that are difficult to use in freely moving animals. To address these limitations, we have developed a new integrated system combining a one-photon endoscope and a digital micromirror device for simultaneous calcium imaging and precise optogenetic photo-stimulation with near cellular resolution (Miniscope with All-optical Patterned Stimulation and Imaging, MAPSI). Using this highly portable system in freely moving mice, we were able to image striatal neurons from either the direct pathway or the indirect pathway while simultaneously activating any neuron of choice in the field of view, or to synthesize arbitrary spatiotemporal patterns of photo-stimulation. We could also select neurons based on their relationship with behavior and recreate the behavior by mimicking the natural neural activity with photo-stimulation. MAPSI thus provides a powerful tool for interrogation of neural circuit function in freely moving animals.


2021 ◽  
Vol 119 (1) ◽  
pp. e2119237119
Author(s):  
Brian S. Muntean ◽  
Subhi Marwari ◽  
Xiaona Li ◽  
Douglas C. Sloan ◽  
Brian D. Young ◽  
...  

Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger with an essential role in neuronal function. cAMP synthesis by adenylyl cyclases (AC) is controlled by G protein–coupled receptor (GPCR) signaling systems. However, the network of molecular players involved in the process is incompletely defined. Here, we used CRISPR/Cas9–based screening to identify that members of the potassium channel tetradimerization domain (KCTD) family are major regulators of cAMP signaling. Focusing on striatal neurons, we show that the dominant isoform KCTD5 exerts its effects through an unusual mechanism that modulates the influx of Zn2+ via the Zip14 transporter to exert unique allosteric effects on AC. We further show that KCTD5 controls the amplitude and sensitivity of stimulatory GPCR inputs to cAMP production by Gβγ-mediated AC regulation. Finally, we report that KCTD5 haploinsufficiency in mice leads to motor deficits that can be reversed by chelating Zn2+. Together, our findings uncover KCTD proteins as major regulators of neuronal cAMP signaling via diverse mechanisms.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alejandro Lillo ◽  
Jaume Lillo ◽  
Iu Raïch ◽  
Cristina Miralpeix ◽  
Francesc Dosrius ◽  
...  

There is evidence of ghrelinergic-cannabinoidergic interactions in the central nervous system (CNS) that may impact on the plasticity of reward circuits. The aim of this article was to look for molecular and/or functional interactions between cannabinoid CB1 and ghrelin GHS-R1a receptors. In a heterologous system and using the bioluminescence resonance energy transfer technique we show that human versions of cannabinoid CB1 and ghrelin GHS-R1a receptors may form macromolecular complexes. Such receptor heteromers have particular properties in terms of CB1/Gi-mediated signaling and in terms of GHS-R1a-Gq-mediated signaling. On the one hand, just co-expression of CB1R and GHS-R1a led to impairment of cannabinoid signaling. On the other hand, cannabinoids led to an increase in ghrelin-derived calcium mobilization that was stronger at low concentrations of the CB1 receptor agonist, arachidonyl-2’-chloroethylamide (ACEA). The expression of CB1-GHS-R1a receptor complexes in striatal neurons was confirmed by in situ proximity ligation imaging assays. Upregulation of CB1-GHS-R1a- receptor complexes was found in striatal neurons from siblings of pregnant female mice on a high-fat diet. Surprisingly, the expression was upregulated after treatment of neurons with ghrelin (200 nM) or with ACEA (100 nM). These results help to better understand the complexities underlying the functional interactions of neuromodulators in the reward areas of the brain.


2021 ◽  
pp. 110226
Author(s):  
Jace Jones-Tabah ◽  
Ryan D. Martin ◽  
Jennifer J. Chen ◽  
Jason C. Tanny ◽  
Paul B.S. Clarke ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Bradley M Roberts ◽  
Elizabeth Lambert ◽  
Jessica A Livesey ◽  
Zhaofa Wu ◽  
Yulong Li ◽  
...  

Striatal adenosine A1 receptor (A1R) activation can inhibit dopamine release. A1Rs on other striatal neurons are activated by an adenosine tone that is limited by equilibrative nucleoside transporter 1 (ENT1) that is enriched on astrocytes and is ethanol-sensitive. We explored whether dopamine release in nucleus accumbens core is under tonic inhibition by A1Rs, and is regulated by astrocytic ENT1 and ethanol. In ex vivo striatal slices from male and female mice, A1R agonists inhibited dopamine release evoked electrically or optogenetically and detected using fast-scan cyclic voltammetry, most strongly for lower stimulation frequencies and pulse numbers, thereby enhancing the activity-dependent contrast of dopamine release. Conversely, A1R antagonists reduced activity-dependent contrast but enhanced evoked dopamine release levels, even for single optogenetic pulses indicating an underlying tonic inhibition. The ENT1 inhibitor NBTI reduced dopamine release and promoted A1R-mediated inhibition, and conversely, virally-mediated astrocytic overexpression of ENT1 enhanced dopamine release and relieved A1R-mediated inhibition. By imaging the genetically encoded fluorescent adenosine sensor GRAB-Ado, we identified a striatal extracellular adenosine tone that was elevated by the ENT1 inhibitor and sensitive to gliotoxin fluorocitrate. Finally, we identified that ethanol (50 mM) promoted A1R-mediated inhibition of dopamine release, through diminishing adenosine uptake via ENT1. Together, these data reveal that dopamine output dynamics are gated by a striatal adenosine tone, limiting amplitude but promoting contrast, regulated by ENT1, and promoted by ethanol. These data add to the diverse mechanisms through which ethanol modulates striatal dopamine, and to emerging datasets supporting astrocytic transporters as important regulators of striatal function.


Sign in / Sign up

Export Citation Format

Share Document