disease therapy
Recently Published Documents


TOTAL DOCUMENTS

834
(FIVE YEARS 251)

H-INDEX

53
(FIVE YEARS 11)

2021 ◽  
Vol 23 (1) ◽  
pp. 398
Author(s):  
Francesco Agostini ◽  
Anna Masato ◽  
Luigi Bubacco ◽  
Marco Bisaglia

Parkinson disease (PD) is a severe neurodegenerative disorder that affects around 2% of the population over 65 years old. It is characterized by the progressive loss of nigrostriatal dopaminergic neurons, resulting in motor disabilities of the patients. At present, only symptomatic cures are available, without suppressing disease progression. In this frame, the anti-diabetic drug metformin has been investigated as a potential disease modifier for PD, being a low-cost and generally well-tolerated medication, which has been successfully used for decades in the treatment of type 2 diabetes mellitus. Despite the precise mechanisms of action of metformin being not fully elucidated, the drug has been known to influence many cellular pathways that are associated with PD pathology. In this review, we present the evidence in the literature supporting the neuroprotective role of metformin, i.e., autophagy upregulation, degradation of pathological α-synuclein species, and regulation of mitochondrial functions. The epidemiological studies conducted in diabetic patients under metformin therapy aimed at evaluating the correlation between long-term metformin consumption and the risk of developing PD are also discussed. Finally, we provide an interpretation for the controversial results obtained both in experimental models and in clinical studies, thus providing a possible rationale for future investigations for the repositioning of metformin for PD therapy.


2021 ◽  
Vol 29 ◽  
Author(s):  
Giambattista Marotta ◽  
Filippo Basagni ◽  
Michela Rosini ◽  
Anna Minarini

Abstract: Fyn kinase is a member of the Src non-receptor tyrosine kinase family. Fyn is involved in multiple signaling pathways extending from cell proliferation and differentiation to cell adhesion and cell motility, and it has been found to be overexpressed in various types of cancers. In the central nervous system, Fyn exerts several different functions such as axon–glial signal transduction, oligodendrocyte maturation and myelination, and it is implicated in neuroinflammatory processes. Based on these premises, Fyn emerges as an attractive target in cancer and neurodegenerative disease therapy, particularly Alzheimer disease (AD), based on its activation by Aβ via cellular prion protein and its interaction with tau protein. However, Fyn is also a challenging target since the Fyn inhibitors discovered so far, due to the relevant homology of Fyn with other kinases, suffer from off-target effects. This review covers the efforts performed in the last decade to identify and optimize small molecules that effectively inhibit Fyn, both in enzymatic and in cell assays, including drug repositioning practices, as an opportunity of therapeutic intervention in neurodegeneration.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaoxiang Xu ◽  
Jianwei Zheng ◽  
Yanze He ◽  
Kun Lin ◽  
Shuang Li ◽  
...  

Hearing loss is a common disease due to sensory loss caused by the diseases in the inner ear. The development of delivery systems for inner ear disease therapy is important to achieve high efficiency and reduce side effects. Currently, traditional drug delivery systems exhibit the potential to be used for inner ear disease therapy, but there are still some drawbacks. As nanotechnology is developing these years, one of the solutions is to develop nanoparticle-based delivery systems for inner ear disease therapy. Various nanoparticles, such as soft material and inorganic-based nanoparticles, have been designed, tested, and showed controlled delivery of drugs, improved targeting property to specific cells, and reduced systemic side effects. In this review, we summarized recent progress in nanocarriers for inner ear disease therapy. This review provides useful information on developing promising nanocarriers for the efficient treatment of inner ear diseases and for further clinical applications for inner ear disease therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yun Zhang ◽  
Yan Jiao ◽  
Xun Li ◽  
Sheng Gao ◽  
Nenghua Zhou ◽  
...  

Pyroptosis is a lytic form of programmed cell death mediated by gasdermins (GSDMs) with pore-forming activity in response to certain exogenous and endogenous stimuli. The inflammasomes are intracellular multiprotein complexes consisting of pattern recognition receptors, an adaptor protein ASC (apoptosis speck-like protein), and caspase-1 and cause autocatalytic activation of caspase-1, which cleaves gasdermin D (GSDMD), inducing pyroptosis accompanied by cytokine release. In recent years, the pathogenic roles of inflammasomes and pyroptosis in multiple eye diseases, including keratitis, dry eyes, cataracts, glaucoma, uveitis, age-related macular degeneration, and diabetic retinopathy, have been continuously confirmed. Inhibiting inflammasome activation and abnormal pyroptosis in eyes generally attenuates inflammation and benefits prognosis. Therefore, insight into the pathogenesis underlying pyroptosis and inflammasome development in various types of eye diseases may provide new therapeutic strategies for ocular disorders. Inhibitors of pyroptosis, such as NLRP3, caspase-1, and GSDMD inhibitors, have been proven to be effective in many eye diseases. The purpose of this article is to illuminate the mechanism underlying inflammasome activation and pyroptosis and emphasize its crucial role in various ocular disorders. In addition, we review the application of pyroptosis modulators in eye diseases.


EBioMedicine ◽  
2021 ◽  
Vol 74 ◽  
pp. 103691
Author(s):  
Wioleta Grabowska-Pyrzewicz ◽  
Andrew Want ◽  
Jerzy Leszek ◽  
Urszula Wojda

Author(s):  
Tong Liu ◽  
Yuxi Wang ◽  
Jiaxing Wang ◽  
Changyu Ren ◽  
Hao Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document