scholarly journals Hypoxia Tolerance and Metabolic Suppression in Oxygen Minimum Zone Euphausiids: Implications for Ocean Deoxygenation and Biogeochemical Cycles

2016 ◽  
Vol 56 (4) ◽  
pp. 510-523 ◽  
Author(s):  
Brad A. Seibel ◽  
Jillian L. Schneider ◽  
Stein Kaartvedt ◽  
Karen F. Wishner ◽  
Kendra L. Daly
2014 ◽  
Vol 217 (14) ◽  
pp. 2555-2568 ◽  
Author(s):  
B. A. Seibel ◽  
N. S. Hafker ◽  
K. Trubenbach ◽  
J. Zhang ◽  
S. N. Tessier ◽  
...  

2021 ◽  
Vol 18 (3) ◽  
pp. 977-992
Author(s):  
Catherine V. Davis ◽  
Karen Wishner ◽  
Willem Renema ◽  
Pincelli M. Hull

Abstract. Oxygen-depleted regions of the global ocean are rapidly expanding, with important implications for global biogeochemical cycles. However, our ability to make projections about the future of oxygen in the ocean is limited by a lack of empirical data with which to test and constrain the behavior of global climatic and oceanographic models. We use depth-stratified plankton tows to demonstrate that some species of planktic foraminifera are adapted to life in the heart of the pelagic oxygen minimum zone (OMZ). In particular, we identify two species, Globorotaloides hexagonus and Hastigerina parapelagica, living within the eastern tropical North Pacific OMZ. The tests of the former are preserved in marine sediments and could be used to trace the extent and intensity of low-oxygen pelagic habitats in the fossil record. Additional morphometric analyses of G. hexagonus show that tests found in the lowest oxygen environments are larger, more porous, less dense, and have more chambers in the final whorl. The association of this species with the OMZ and the apparent plasticity of its test in response to ambient oxygenation invites the use of G. hexagonus tests in sediment cores as potential proxies for both the presence and intensity of overlying OMZs.


2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document