A Fixed Point Method for Tchebycheff Solution of Inconsistent Linear Equations

1973 ◽  
Vol 12 (2) ◽  
pp. 137-154 ◽  
Author(s):  
M. C. EASTON
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Ding Xu ◽  
Jinglei Xu ◽  
Gongnan Xie

The well-known Blasius flow is governed by a third-order nonlinear ordinary differential equation with two-point boundary value. Specially, one of the boundary conditions is asymptotically assigned on the first derivative at infinity, which is the main challenge on handling this problem. Through introducing two transformations not only for independent variable bur also for function, the difficulty originated from the semi-infinite interval and asymptotic boundary condition is overcome. The deduced nonlinear differential equation is subsequently investigated with the fixed point method, so the original complex nonlinear equation is replaced by a series of integrable linear equations. Meanwhile, in order to improve the convergence and stability of iteration procedure, a sequence of relaxation factors is introduced in the framework of fixed point method and determined by the steepest descent seeking algorithm in a convenient manner.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4933-4944
Author(s):  
Dongseung Kang ◽  
Heejeong Koh

We obtain a general solution of the sextic functional equation f (ax+by)+ f (ax-by)+ f (bx+ay)+ f (bx-ay) = (ab)2(a2 + b2)[f(x+y)+f(x-y)] + 2(a2-b2)(a4-b4)[f(x)+f(y)] and investigate the stability of sextic Lie *-derivations associated with the given functional equation via fixed point method. Also, we present a counterexample for a single case.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Nguyen Ngoc Phung ◽  
Bao Quoc Ta ◽  
Ho Vu

In this paper, we establish the Ulam-Hyers stability and Ulam-Hyers-Rassias stability for fuzzy integrodifferential equations by using the fixed point method and the successive approximation method.


2012 ◽  
Vol 2012 (1) ◽  
pp. 137 ◽  
Author(s):  
HM Kenari ◽  
Reza Saadati ◽  
Choonkil Park

2021 ◽  
Vol 5 (4) ◽  
pp. 240
Author(s):  
A. Torres-Hernandez ◽  
F. Brambila-Paz

Considering the large number of fractional operators that exist, and since it does not seem that their number will stop increasing soon at the time of writing this paper, it is presented for the first time, as far as the authors know, a simple and compact method to work the fractional calculus through the classification of fractional operators using sets. This new method of working with fractional operators, which may be called fractional calculus of sets, allows generalizing objects of conventional calculus, such as tensor operators, the Taylor series of a vector-valued function, and the fixed-point method, in several variables, which allows generating the method known as the fractional fixed-point method. Furthermore, it is also shown that each fractional fixed-point method that generates a convergent sequence has the ability to generate an uncountable family of fractional fixed-point methods that generate convergent sequences. So, it is presented a method to estimate numerically in a region Ω the mean order of convergence of any fractional fixed-point method, and it is shown how to construct a hybrid fractional iterative method to determine the critical points of a scalar function. Finally, considering that the proposed method to classify fractional operators through sets allows generalizing the existing results of the fractional calculus, some examples are shown of how to define families of fractional operators that satisfy some property to ensure the validity of the results to be generalized.


Sign in / Sign up

Export Citation Format

Share Document