Linear matrix inequality approach to stochastic stability of uncertain delayed BAM neural networks

2012 ◽  
Vol 78 (6) ◽  
pp. 1156-1178 ◽  
Author(s):  
R. Sakthivel ◽  
R. Raja ◽  
S. Marshal Anthoni
2004 ◽  
Vol 14 (09) ◽  
pp. 3377-3384 ◽  
Author(s):  
XIAOFENG LIAO ◽  
KWOK-WO WONG ◽  
SHIZHONG YANG

Some sufficient conditions for the asymptotic stability of cellular neural networks with time delay are derived using the Lyapunov–Krasovskii stability theory for functional differential equations as well as the linear matrix inequality (LMI) approach. The analysis shows how some well-known results can be refined and generalized in a straightforward manner. Moreover, the stability criteria obtained are delay-independent. They are less conservative and restrictive than those reported so far in the literature, and provide a more general set of criteria for determining the stability of delayed cellular neural networks.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Choon Ki Ahn

A new robust training law, which is called an input/output-to-state stable training law (IOSSTL), is proposed for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the IOSSTL is presented to not only guarantee exponential stability but also reduce the effect of an external disturbance. It is shown that the IOSSTL can be obtained by solving the LMI, which can be easily facilitated by using some standard numerical packages. Numerical examples are presented to demonstrate the validity of the proposed IOSSTL.


Sign in / Sign up

Export Citation Format

Share Document