dynamic neural networks
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 37)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xufen Xie ◽  
Chuanchuan Zhu ◽  
Di Wu ◽  
Ming Du

Naturally derived bioactive peptides with antihypertensive activities serve as promising alternatives to pharmaceutical drugs. There are few relevant reports on the mapping relationship between the EC50 value of antihypertensive peptide activity (AHTPA-EC50) and its corresponding amino acid sequence (AAS) at present. In this paper, we have constructed two group series based on sorting natural logarithm of AHTPA-EC50 or sorting its corresponding AAS encoding number. One group possesses two series, and we find that there must be a random number series in any group series. The random number series manifests fractal characteristics, and the constructed series of sorting natural logarithm of AHTPA-EC50 shows good autocorrelation characteristics. Therefore, two non-linear autoregressive models with exogenous input (NARXs) were established to describe the two series. A prediction method is further designed for AHTPA-EC50 prediction based on the proposed model. Two dynamic neural networks for NARXs (NARXNNs) are designed to verify the two series characteristics. Dipeptides and tripeptides are used to verify the proposed prediction method. The results show that the mean square error (MSE) of prediction is about 0.5589 for AHTPA-EC50 prediction when the classification of AAS is correct. The proposed method provides a solution for AHTPA-EC50 prediction.


2021 ◽  
pp. 0309524X2110666
Author(s):  
Mo’ath Qandil ◽  
Omar Mohamed ◽  
Wejdan Abu Elhaija

The increase of the favorable impacts of wind energy on the environment and the global energy requires overall understanding of the modeling methods that are commonly used for time-based simulation of wind energy systems. This paper introduces a comprehensive comparison of three salient modeling techniques of wind energy conversion systems, which are: the physical modeling, subspace system identification, and Dynamic Neural Network (ANN). The models have been created with the different modeling philosophies with the aid of historical data-sets representing four apart days of operation. The real system incorporates (TWT-1.65) type Wind-Turbine intergated with Multi-Pole Synchronous Generators (MPSG). The compariosn provides some crucial answers to the concerns of which technique is suited for an application, consequently, the comparison includes quantitative and qualitative measures. This article can be considered as a brief guide for future researchers to have thorough understanding of the modeling concepts in the field of wind engineering.


2021 ◽  
pp. 0309524X2110520
Author(s):  
Germaine Djuidje Kenmoé ◽  
Hervice Roméo Fogno Fotso ◽  
Claude Vidal Aloyem Kazé

This paper investigates six of the most widely used wind speed forecasting models for a combination of statistical and physical methods for the purpose of Wind Turbine Power Generation (WTPG) prediction in Cameroon. Statistical method based on both single static and dynamic neural networks architectures and two hybrid neural networks architectures in comparison to ARIMA model are employed for multi-step ahead wind speed forecasting in two Datasets in Bapouh, Cameroon. The physical method is used to estimate 1 day ahead expected WTPG for each Dataset using the previous predicted wind speed from better forecasting models. The obtained results of multi-step ahead forecasting showed that the ARIMA and nonlinear autoregression with exogenous input neural network (NARXNN) models perform well the wind speed forecasting than other forecasting models in both Datasets. The better performances of ARIMA are achieved with one-step ahead and two-step ahead forecasting, while NARXNN is better with one-step ahead forecasting. But NARXNN models have more computational time than other models such as ARIMA models. Furthermore, the effectiveness of employed hybrid method for WTPG prediction is proven.


Author(s):  
Steven Colleman ◽  
Thomas Verelst ◽  
Linyan Mei ◽  
Tinne Tuytelaars ◽  
Marian Verhelst

Author(s):  
Georgios Gravanis ◽  
Ioannis Dragogias ◽  
Konstantinos Papakiriakos ◽  
Chrysovalantou Ziogou ◽  
Konstantinos Diamantaras

Sign in / Sign up

Export Citation Format

Share Document