On the explicit feedback stabilization of one-dimensional linear nonautonomous parabolic equations via oblique projections

Author(s):  
Sérgio S Rodrigues ◽  
Kevin Sturm
2015 ◽  
Vol 63 (1) ◽  
pp. 295-303
Author(s):  
H. Sano

Abstract This paper is concerned with the problem of stabilizing one-dimensional parabolic systems related to formations by using finitedimensional controllers of a modal type. The parabolic system is described by a Sturm-Liouville operator, and the boundary condition is different from any of Dirichlet type, Neumann type, and Robin type, since it contains the time derivative of boundary values. In this paper, it is shown that the system is formulated as an evolution equation with unbounded output operator in a Hilbert space, and further that it is stabilized by using an RMF (residual mode filter)-based controller which is of finite-dimension. A numerical simulation result is also given to demonstrate the validity of the finite-dimensional controller


2020 ◽  
Vol 28 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Jin Cheng ◽  
Yufei Ke ◽  
Ting Wei

AbstractThe backward problems of parabolic equations are of interest in the study of both mathematics and engineering. In this paper, we consider a backward problem for the one-dimensional heat conduction equation with the measurements on a discrete set. The uniqueness for recovering the initial value is proved by the analytic continuation method. We discretize this inverse problem by a finite element method to deduce a severely ill-conditioned linear system of algebra equations. In order to overcome the ill-posedness, we apply the discrete Tikhonov regularization with the generalized cross validation rule to obtain a stable numerical approximation to the initial value. Numerical results for three examples are provided to show the effect of the measurement data.


2018 ◽  
Vol 51 (16) ◽  
pp. 133-138 ◽  
Author(s):  
Hoang-Dung Tran ◽  
Weiming Xiang ◽  
Stanley Bak ◽  
Taylor T. Johnson

Sign in / Sign up

Export Citation Format

Share Document