scholarly journals Post-processing of the plane-wave approximation of Schrödinger equations. Part II: Kohn–Sham models

Author(s):  
Geneviève Dusson

Abstract In this article, we provide a priori estimates for a perturbation-based post-processing method of the plane-wave approximation of nonlinear Kohn–Sham local density approximation (LDA) models with pseudopotentials, relying on Cancès et al. (2020, Post-processing of the plane-wave approximation of Schrödinger equations. Part I: linear operators. IMA Journal of Numerical Analysis, draa044) for the proofs of such estimates in the case of linear Schrödinger equations. As in Cancès et al. (2016, A perturbation-method-based post-processing for the plane-wave discretization of Kohn–Sham models. J. Comput. Phys., 307, 446–459), where these a priori results were announced and tested numerically, we use a periodic setting and the problem is discretized with plane waves (Fourier series). This post-processing method consists of performing a full computation in a coarse plane-wave basis and then to compute corrections based on the first-order perturbation theory in a fine basis, which numerically only requires the computation of the residuals of the ground-state orbitals in the fine basis. We show that this procedure asymptotically improves the accuracy of two quantities of interest: the ground-state density matrix, i.e. the orthogonal projector on the lowest $N$ eigenvectors, and the ground-state energy.

Author(s):  
Eric Cancès ◽  
Geneviève Dusson ◽  
Yvon Maday ◽  
Benjamin Stamm ◽  
Martin Vohralík

Abstract In this article we prove a priori error estimates for the perturbation-based post-processing of the plane-wave approximation of Schrödinger equations introduced and tested numerically in previous works (Cancès, Dusson, Maday, Stamm and Vohralík, (2014), A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations. C. R. Math., 352, 941--946; Cancès, Dusson, Maday, Stamm and Vohralík, (2016), A perturbation-method-based postprocessing for the planewave discretization of Kohn–Sham models. J. Comput. Phys., 307, 446--459.) We consider here a Schrödinger operator ${{\mathscr{H}} \,}= -\frac{1}{2}\varDelta +{\mathscr{V}}$ on $L^2(\varOmega )$, where $\varOmega $ is a cubic box with periodic boundary conditions and where ${\mathscr{V}}$ is a multiplicative operator by a regular-enough function ${\mathscr{V}}$. The quantities of interest are, on the one hand, the ground-state energy defined as the sum of the lowest $N$ eigenvalues of ${{\mathscr{H}} \,}$, and, on the other hand, the ground-state density matrix that is the spectral projector on the vector space spanned by the associated eigenvectors. Such a problem is central in first-principle molecular simulation, since it corresponds to the so-called linear subproblem in Kohn–Sham density functional theory. Interpreting the exact eigenpairs of ${{\mathscr{H}} \,}$ as perturbations of the numerical eigenpairs obtained by a variational approximation in a plane-wave (i.e., Fourier) basis we compute first-order corrections for the eigenfunctions, which are turned into corrections on the ground-state density matrix. This allows us to increase the accuracy by a factor proportional to the inverse of the kinetic energy cutoff ${E_{\textrm{c}}}^{-1}$ of both the ground-state energy and the ground-state density matrix in Hilbert–Schmidt norm at a low computational extra cost. Indeed, the computation of the corrections only requires the computation of the residual of the solution in a larger plane-wave basis and two fast Fourier transforms per eigenvalue.


Author(s):  
Jitendra Singh ◽  
Aurélien Babarit

The hydrodynamic forces acting on an isolated body could be considerably different than those when it is considered in an array of multiple bodies, due to wave interactions among them. In this context, we present in this paper a numerical approach based on the linear potential flow theory to solve full hydrodynamic interaction problem in a multiple body array. In contrast to the previous approaches that considered all bodies in an array as a single unit, the present approach relies on solving for an isolated body. The interactions among the bodies are then taken into account via plane wave approximation in an iterative manner. The boundary value problem corresponding to a isolated body is solved by the Boundary Element Method (BEM). The approach is useful when the bodies are sufficiently distant from each other, at-least greater than five times the characteristic dimensions of the body. This is a valid assumption for wave energy converter devices array of point absorber type, which is our target application at a later stage. The main advantage of the proposed approach is that the computational time requirement is significantly less than the commonly used direct BEM. The time savings can be realized for even small arrays consisting of four bodies. Another advantage is that the computer memory requirements are also significantly smaller compared to the direct BEM, allowing us to consider large arrays. The numerical results for hydrodynamic interaction problem in two arrays consisting of 25 cylinders and same number of rectangular flaps are presented to validate the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document