scholarly journals On the Period Map for Polarized Hyperkähler Fourfolds

2017 ◽  
Vol 2019 (22) ◽  
pp. 6887-6923 ◽  
Author(s):  
Olivier Debarre ◽  
Emanuele Macrì

Abstract We study smooth projective hyperkähler fourfolds that are deformations of Hilbert squares of K3 surfaces and are equipped with a polarization of fixed degree and divisibility. They are parametrized by a quasi-projective irreducible 20-dimensional moduli space and Verbitksy’s Torelli theorem implies that their period map is an open embedding. Our main result is that the complement of the image of the period map is a finite union of explicit Heegner divisors that we describe. We also prove that infinitely many Heegner divisors in a given period space have the property that their general points correspond to fourfolds which are isomorphic to Hilbert squares of a K3 surfaces, or to double EPW (Eisenbud–Popescu–Walter) sextics. In two appendices, we determine the groups of biregular or birational automorphisms of various projective hyperkähler fourfolds with Picard number 1 or 2.

2005 ◽  
Vol 16 (01) ◽  
pp. 13-36 ◽  
Author(s):  
DANIEL HUYBRECHTS

Generalized Calabi–Yau structures, a notion recently introduced by Hitchin, are studied in the case of K3 surfaces. We show how they are related to the classical theory of K3 surfaces and to moduli spaces of certain SCFT as studied by Aspinwall and Morrison. It turns out that K3 surfaces and symplectic structures are both special cases of this general notion. The moduli space of generalized Calabi–Yau structures admits a canonical symplectic form with respect to which the moduli space of symplectic structures is Lagrangian. The standard theory of K3 surfaces implies surjectivity of the period map and a weak form of the Global Torelli theorem.


2012 ◽  
Vol 23 (07) ◽  
pp. 1250075 ◽  
Author(s):  
GAVRIL FARKAS ◽  
ANGELA ORTEGA

We discuss the role of K3 surfaces in the context of Mercat's conjecture in higher rank Brill–Noether theory. Using liftings of Koszul classes, we show that Mercat's conjecture in rank 2 fails for any number of sections and for any gonality stratum along a Noether–Lefschetz divisor inside the locus of curves lying on K3 surfaces. Then we show that Mercat's conjecture in rank 3 fails even for curves lying on K3 surfaces with Picard number 1. Finally, we provide a detailed proof of Mercat's conjecture in rank 2 for general curves of genus 11, and describe explicitly the action of the Fourier–Mukai involution on the moduli space of curves.


2009 ◽  
Vol 196 ◽  
pp. 1-26 ◽  
Author(s):  
Michela Artebani

S. Kondō defined a birational period map between the moduli space of genus three curves and a moduli space of polarized K3 surfaces. In this paper we give a resolution of the period map, providing a surjective morphism from a suitable compactification of 3 to the Baily-Borel compactification of a six dimensional ball quotient.


2021 ◽  
Vol 9 ◽  
Author(s):  
L. Göttsche ◽  
M. Kool ◽  
R. A. Williams

Abstract We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic 2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates between K-theoretic Donaldson invariants studied by Göttsche and Nakajima-Yoshioka and K-theoretic Vafa-Witten invariants introduced by Thomas and also studied by Göttsche and Kool. We verify our conjectures in many examples (for example, on K3 surfaces).


2007 ◽  
Vol 76 (259) ◽  
pp. 1493-1499 ◽  
Author(s):  
Arthur Baragar ◽  
Ronald van Luijk

2014 ◽  
Vol 16 (02) ◽  
pp. 1350010 ◽  
Author(s):  
GILBERTO BINI ◽  
FILIPPO F. FAVALE ◽  
JORGE NEVES ◽  
ROBERTO PIGNATELLI

We classify the subgroups of the automorphism group of the product of four projective lines admitting an invariant anticanonical smooth divisor on which the action is free. As a first application, we describe new examples of Calabi–Yau 3-folds with small Hodge numbers. In particular, the Picard number is 1 and the number of moduli is 5. Furthermore, the fundamental group is nontrivial. We also construct a new family of minimal surfaces of general type with geometric genus zero, K2 = 3 and fundamental group of order 16. We show that this family dominates an irreducible component of dimension 4 of the moduli space of the surfaces of general type.


2021 ◽  
Vol 565 ◽  
pp. 598-626
Author(s):  
Michela Artebani ◽  
Claudia Correa Deisler ◽  
Antonio Laface
Keyword(s):  

Author(s):  
KENNETH ASCHER ◽  
KRISTIN DEVLEMING ◽  
YUCHEN LIU

Abstract We show that the K-moduli spaces of log Fano pairs $\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$ , where C is a $(4,4)$ curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ , complete intersection curves in $\mathbb {P}^3$ . This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$ curves on $\mathbb {P}^1\times \mathbb {P}^1$ and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.


Sign in / Sign up

Export Citation Format

Share Document