scholarly journals On Jensen-type Inequalities for Nonsmooth Radial Scattering Solutions of a Loglog Energy-Supercritical Schrödinger Equation

2018 ◽  
Vol 2020 (8) ◽  
pp. 2501-2541
Author(s):  
Tristan Roy

Abstract We prove scattering of solutions of the loglog energy-supercritical Schrödinger equation $i \partial _{t} u + \triangle u = |u|^{\frac{4}{n-2}} u g(|u|)$ with $g(|u|) := \log ^{\gamma } {( \log{(10+|u|^{2})} )}$, $0 < \gamma < \gamma _{n}$, n ∈ {3, 4, 5}, and with radial data $u(0) := u_{0} \in \tilde{H}^{k}:= \dot{H}^{k} (\mathbb{R}^{n})\,\cap\,\dot{H}^{1} (\mathbb{R}^{n})$, where $\frac{n}{2} \geq k> 1 \left(\text{resp.}\,\frac{4}{3}> k > 1\right)$ if n ∈ {3, 4} (resp. n = 5). The proof uses concentration techniques (see e.g., [ 2, 12]) to prove a long-time Strichartz-type estimate on an arbitrarily long time interval J depending on an a priori bound of some norms of the solution, combined with an induction on time of the Strichartz estimates in order to bound these norms a posteriori (see e.g., [ 8, 10]). We also revisit the scattering theory of solutions with radial data in $\tilde{H}^{k}$, $k> \frac{n}{2}$, and n ∈ {3, 4}; more precisely, we prove scattering for a larger range of $\gamma$ s than in [ 10]. In order to control the barely supercritical nonlinearity for nonsmooth solutions, that is, solutions with data in $\tilde{H}^{k}$, $k \leq \frac{n}{2}$, we prove some Jensen-type inequalities.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kelin Li ◽  
Huafei Di

<p style='text-indent:20px;'>Considered herein is the well-posedness and stability for the Cauchy problem of the fourth-order Schrödinger equation with nonlinear derivative term <inline-formula><tex-math id="M1">\begin{document}$ iu_{t}+\Delta^2 u-u\Delta|u|^2+\lambda|u|^pu = 0 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ t\in\mathbb{R} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ x\in \mathbb{R}^n $\end{document}</tex-math></inline-formula>. First of all, for initial data <inline-formula><tex-math id="M4">\begin{document}$ \varphi(x)\in H^2(\mathbb{R}^{n}) $\end{document}</tex-math></inline-formula>, we establish the local well-poseness and finite time blow-up criterion of the solutions, and give a rough estimate of blow-up time and blow-up rate. Secondly, under a smallness assumption on the initial value <inline-formula><tex-math id="M5">\begin{document}$ \varphi(x) $\end{document}</tex-math></inline-formula>, we demonstrate the global well-posedness of the solutions by applying two different methods, and at the same time give the scattering behavior of the solutions. Finally, based on founded a priori estimates, we investigate the stability of solutions by the short-time and long-time perturbation theories, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document