long time dynamics
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 52)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 30 (1) ◽  
pp. 289-313
Author(s):  
Ting-Ying Chang ◽  
◽  
Yihong Du

<abstract><p>In this paper, we consider a reaction-diffusion epidemic model with nonlocal diffusion and free boundaries, which generalises the free-boundary epidemic model by Zhao et al. <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup> by including spatial mobility of the infective host population. We obtain a rather complete description of the long-time dynamics of the model. For the reproduction number $ R_0 $ arising from the corresponding ODE model, we establish its relationship to the spreading-vanishing dichotomy via an associated eigenvalue problem. If $ R_0 \le 1 $, we prove that the epidemic vanishes eventually. On the other hand, if $ R_0 &gt; 1 $, we show that either spreading or vanishing may occur depending on its initial size. In the case of spreading, we make use of recent general results by Du and Ni <sup>[<xref ref-type="bibr" rid="b2">2</xref>]</sup> to show that finite speed or accelerated spreading occurs depending on whether a threshold condition is satisfied by the kernel functions in the nonlocal diffusion operators. In particular, the rate of accelerated spreading is determined for a general class of kernel functions. Our results indicate that, with all other factors fixed, the chance of successful spreading of the disease is increased when the mobility of the infective host is decreased, reaching a maximum when such mobility is 0 (which is the situation considered by Zhao et al. <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>).</p></abstract>


Author(s):  
Nathan Ng ◽  
Eran Rabani

Abstract We study the properties of the Nakajima-Zwanzig memory kernel for a qubit immersed in a many-body localized (i.e. disordered and interacting) bath. We argue that the memory kernel decays as a power law in both the localized and ergodic regimes, and show how this can be leveraged to extract t → ∞ populations for the qubit from finite time (Jt ≤ 10^2) data in the thermalizing phase. This allows us to quantify how the long-time values of the populations approach the expected thermalized state as the bath approaches the thermodynamic limit. This approach should provide a good complement to state-of-the-art numerical methods, for which the long-time dynamics with large baths are impossible to simulate in this phase. Additionally, our numerics on finite baths reveal the possibility for unbounded exponential growth in the memory kernel, a phenomenon rooted in the appearance of exceptional points in the projected Liouvillian governing the reduced dynamics. In small systems amenable to exact numerics, we find that these pathologies may have some correlation with delocalization.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Peter Kling ◽  
Enno Giese ◽  
C. Moritz Carmesin ◽  
Roland Sauerbrey ◽  
Wolfgang P. Schleich

2021 ◽  
pp. 108128652110194
Author(s):  
Fengjuan Meng ◽  
Cuncai Liu ◽  
Chang Zhang

This work is devoted to the following nonlocal extensible beam equation with time delay: [Formula: see text] on a bounded smooth domain [Formula: see text]. The main purpose of this paper is to consider the long-time dynamics of the system. Under suitable assumptions, the quasi-stability property of the system is established, based on which the existence and regularity of a finite-dimensional compact global attractor are obtained. Moreover, the existence of exponential attractors is proved.


Sign in / Sign up

Export Citation Format

Share Document