scholarly journals Endpoint Sobolev Continuity of the Fractional Maximal Function in Higher Dimensions

Author(s):  
David Beltran ◽  
José Madrid

Abstract We establish continuity mapping properties of the noncentered fractional maximal operator $M_{\beta }$ in the endpoint input space $W^{1,1}({\mathbb R}^d)$ for $d \geq 2$ in the cases for which its boundedness is known. More precisely, we prove that for $q=d/(d-\beta )$ the map $f \mapsto |\nabla M_\beta f|$ is continuous from $W^{1,1}({\mathbb R}^d)$ to $L^{q}({\mathbb R}^d)$ for $ 0 < \beta < 1$ if $f$ is radial and for $1 \leq \beta < d$ for general $f$. The results for $1\leq \beta < d$ extend to the centered counterpart $M_\beta ^c$. Moreover, if $d=1$, we show that the conjectured boundedness of that map for $M_\beta ^c$ implies its continuity.

2017 ◽  
Vol 2019 (17) ◽  
pp. 5284-5298 ◽  
Author(s):  
Hannes Luiro ◽  
José Madrid

Abstract In this article, we study the regularity of the non-centered fractional maximal operator $M_{\beta}$. As the main result, we prove that there exists $C(n,\beta)$ such that if $q=n/(n-\beta)$ and $f$ is radial function, then $\|DM_{\beta}f\|_{L^{q}({\mathbb{R}^n})}\leq C(n,\beta)\|Df\|_{L^{1}({\mathbb{R}^n})}$. The corresponding result was previously known only if $n=1$ or $\beta=0$. Our proofs are almost free from one-dimensional arguments. Therefore, we believe that the new approach may be very useful when trying to extend the result for all $f\in W^{1,1}({\mathbb{R}^n})$.


2021 ◽  
Vol 19 (1) ◽  
pp. 306-315
Author(s):  
Esra Kaya

Abstract In this paper, we consider the maximal operator related to the Laplace-Bessel differential operator ( B B -maximal operator) on L p ( ⋅ ) , γ ( R k , + n ) {L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces. We will give a necessary condition for the boundedness of the B B -maximal operator on variable exponent Lebesgue spaces. Moreover, we will obtain that the B B -maximal operator is not bounded on L p ( ⋅ ) , γ ( R k , + n ) {L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces in the case of p − = 1 {p}_{-}=1 . We will also prove the boundedness of the fractional maximal function associated with the Laplace-Bessel differential operator (fractional B B -maximal function) on L p ( ⋅ ) , γ ( R k , + n ) {L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Takeshi Iida

The aim of this paper is to prove the boundedness of the Hardy-Littlewood maximal operator on weighted Morrey spaces and multilinear maximal operator on multiple weighted Morrey spaces. In particular, the result includes the Komori-Shirai theorem and the Iida-Sato-Sawano-Tanaka theorem for the Hardy-Littlewood maximal operator and multilinear maximal function.


2010 ◽  
Vol 55 (8-10) ◽  
pp. 739-758 ◽  
Author(s):  
V.I. Burenkov ◽  
A. Gogatishvili ◽  
V.S. Guliyev ◽  
R.Ch. Mustafayev

2018 ◽  
Vol 104 (3-4) ◽  
pp. 498-507
Author(s):  
V. S. Guliyev ◽  
F. Deringoz ◽  
S. G. Hasanov

2000 ◽  
Vol 7 (1) ◽  
pp. 33-42 ◽  
Author(s):  
D. Cruz-Uribe

Abstract We give a new and simpler proof of Sawyer's theorem characterizing the weights governing the two-weight, strong-type norm inequality for the Hardy-Littlewood maximal operator and the fractional maximal operator. As a further application of our techniques, we give new proofs of two sufficient conditions for such weights due to Wheeden and Sawyer.


Sign in / Sign up

Export Citation Format

Share Document