Class-Specific Antibody Response to Pneumococcal Capsular Polysaccharides in Men Infected with Human Immunodeficiency Virus Type 1

1988 ◽  
Vol 158 (5) ◽  
pp. 983-990 ◽  
Author(s):  
E. N. Janoff ◽  
J. M. Douglas ◽  
M. Gabriel ◽  
M. J. Blaser ◽  
A. J. Davidson ◽  
...  
2007 ◽  
Vol 15 (2) ◽  
pp. 253-259 ◽  
Author(s):  
P. Durando ◽  
D. Fenoglio ◽  
A. Boschini ◽  
F. Ansaldi ◽  
G. Icardi ◽  
...  

ABSTRACT The objective of this study was to evaluate and compare both the safety and tolerability and the humoral and cell-mediated immune responses for two influenza virus subunit vaccines, one with MF59 adjuvant (Fluad) and one without an adjuvant (Agrippal), in healthy and in human immunodeficiency virus type 1 (HIV-1)-infected adult individuals. To achieve this aim, an open, randomized, comparative clinical trial was performed during the 2005-2006 season. A total of 256 subjects were enrolled to receive one dose of vaccine intramuscularly. Blood samples were taken at the time of vaccination and at 1 and 3 months postvaccination. A good humoral antibody response was detected for both vaccines, meeting all the criteria of the Committee for Medical Products for Human Use. After Beyer's correction for prevaccination status, Fluad exhibited better immunogenicity than Agrippal, as shown from the analysis of the geometric mean titers, with significant differences for some virus strains; however, no definitive conclusions on the clinical significance of such results can be drawn, because the method used to estimate antibody response is currently nonstandard for influenza virus vaccines. Significant induction of an antigen-specific CD4+ T-lymphocyte proliferative response was detected at all time points after immunization, for both the vaccines, among HIV-1-seronegative subjects. This was different from what was observed for HIV-1-infected individuals. In this group, significance was not reached at 30 days postvaccination (T30) for those immunized with Agrippal. Also when data were compared between treatment groups, a clear difference in the response at T30 was observed in favor of Fluad (P = 0.0002). The safety profiles of both vaccines were excellent. For HIV-1-infected individuals, no significant changes either in viremia or in the CD4+ cell count were observed at any time point. The results showed good safety and immunogenicity for both vaccines under study for both uninfected and HIV-1-infected adults, confirming current recommendations for immunization of this high-risk category.


1997 ◽  
Vol 57 (1-3) ◽  
pp. 105-112 ◽  
Author(s):  
Paul W.H.I Parren ◽  
Marie-Claire Gauduin ◽  
Richard A Koup ◽  
Pascal Poignard ◽  
Paola Fisicaro ◽  
...  

2007 ◽  
Vol 82 (5) ◽  
pp. 2367-2375 ◽  
Author(s):  
Elin S. Gray ◽  
Penny L. Moore ◽  
Frederic Bibollet-Ruche ◽  
Hui Li ◽  
Julie M. Decker ◽  
...  

ABSTRACT The broadly neutralizing monoclonal antibody (MAb) 4E10 recognizes a linear epitope in the C terminus of the membrane-proximal external region (MPER) of gp41. This epitope is particularly attractive for vaccine design because it is highly conserved among human immunodeficiency virus type 1 (HIV-1) strains and neutralization escape in vivo has not been observed. Multiple env genes were cloned from an HIV-1 subtype C virus isolated from a 7-year-old perinatally infected child who had anti-MPER neutralizing antibodies. One clone (TM20.13) was resistant to 4E10 neutralization as a result of an F673L substitution in the MPER. Frequency analysis showed that F673L was present in 33% of the viral variants and in all cases was linked to the presence of an intact 2F5 epitope. Two other envelope clones were sensitive to 4E10 neutralization, but TM20.5 was 10-fold less sensitive than TM20.6. Substitutions at positions 674 and 677 within the MPER rendered TM20.5 more sensitive to 4E10 but had no effect on TM20.6. Using chimeric and mutant constructs of these two variants, we further demonstrated that the lentivirus lytic peptide-2 domain in the cytoplasmic tail affected the accessibility of the 4E10 epitope, as well as virus infectivity. Collectively, these genetic changes in the face of a neutralizing antibody response to the MPER strongly suggested immune escape from antibody responses targeting this region.


2006 ◽  
Vol 80 (3) ◽  
pp. 1414-1426 ◽  
Author(s):  
Y. Li ◽  
K. Svehla ◽  
N. L. Mathy ◽  
G. Voss ◽  
J. R. Mascola ◽  
...  

ABSTRACT We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.


Sign in / Sign up

Export Citation Format

Share Document