scholarly journals Acquisition of Antibodies Against Endothelial Protein C Receptor–Binding Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1 in Children with Severe Malaria

2018 ◽  
Vol 219 (5) ◽  
pp. 808-818 ◽  
Author(s):  
Janavi S Rambhatla ◽  
Louise Turner ◽  
Laurens Manning ◽  
Moses Laman ◽  
Timothy M E Davis ◽  
...  
2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Sixbert I. Mkumbaye ◽  
Christian W. Wang ◽  
Eric Lyimo ◽  
Jakob S. Jespersen ◽  
Alphaxard Manjurano ◽  
...  

ABSTRACT By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte membrane protein 1 (PfEMP1) subset mediating binding to endothelial receptors. Previous studies indicate that PfEMP1 adhesins with so-called CIDRα1 domains capable of binding endothelial protein C receptor (EPCR) constitute the PfEMP1 subset associated with severe pediatric malaria. To analyze the relative importance of different subtypes of CIDRα1 domains, we compared Pfemp1 transcript levels in children with severe malaria (including 9 fatal and 114 surviving cases), children hospitalized with uncomplicated malaria (n = 42), children with mild malaria not requiring hospitalization (n = 10), and children with parasitemia and no ongoing fever (n = 12). High levels of transcripts encoding EPCR-binding PfEMP1 were found in patients with symptomatic infections, and the abundance of these transcripts increased with disease severity. The compositions of CIDRα1 subtype transcripts varied markedly between patients, and none of the subtypes were dominant. Transcript-level analyses targeting other domain types indicated that subtypes of DBLβ or DBLζ domains might mediate binding phenomena that, in conjunction with EPCR binding, could contribute to pathogenesis. These observations strengthen the rationale for targeting the PfEMP1-EPCR interaction by vaccines and adjunctive therapies. Interventions should target EPCR binding of all CIDRα1 subtypes.


2015 ◽  
Vol 83 (8) ◽  
pp. 3096-3103 ◽  
Author(s):  
Louise Turner ◽  
Thomas Lavstsen ◽  
Bruno P. Mmbando ◽  
Christian W. Wang ◽  
Pamela A. Magistrado ◽  
...  

Severe malaria syndromes are precipitated byPlasmodium falciparumparasites binding to endothelial receptors on the vascular lining. This binding is mediated by members of the highly variantP. falciparumerythrocyte membrane protein 1 (PfEMP1) family. We have previously identified a subset of PfEMP1 proteins associated with severe malaria and found that the receptor for these PfEMP1 variants is endothelial protein C receptor (EPCR). The binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDR) of the subtypes α1.1 and α1.4 to α1.8. In this study, we investigated the acquisition of anti-CIDR antibodies using plasma samples collected in four study villages with different malaria transmission intensities in northeastern Tanzania during a period with a decline in malaria transmission. We show that individuals exposed to high levels of malaria transmission acquire antibodies to EPCR-binding CIDR domains early in life and that these antibodies are acquired more rapidly than antibodies to other CIDR domains. The rate by which antibodies to EPCR-binding CIDR domains are acquired in populations in areas where malaria is endemic is determined by the malaria transmission intensity, and on a population level, the antibodies are rapidly lost if transmission is interrupted. This indicates that sustained exposure is required to maintain the production of the antibodies.


2016 ◽  
Vol 12 (11) ◽  
pp. e1006011 ◽  
Author(s):  
Ariel Magallón-Tejada ◽  
Sónia Machevo ◽  
Pau Cisteró ◽  
Thomas Lavstsen ◽  
Pedro Aide ◽  
...  

2016 ◽  
Vol 84 (5) ◽  
pp. 1331-1335 ◽  
Author(s):  
George M. Warimwe ◽  
Abdirahman I. Abdi ◽  
Michelle Muthui ◽  
Gregory Fegan ◽  
Jennifer N. Musyoki ◽  
...  

Plasmodium falciparumerythrocyte membrane protein 1 (PfEMP1), expressed onP. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinicalP. falciparumsamples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservationper seand disease severity within these data. This contrasts with the simple hypothesis thatP. falciparumisolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.


2021 ◽  
Author(s):  
Janavi S Rambhatla ◽  
Gerry Q Tonkin-Hill ◽  
Eizo Takashima ◽  
Takafumi Tsuboi ◽  
Rintis Noviyanti ◽  
...  

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multi-domain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal components analysis, antibodies to three of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults. Importance Severe Plasmodium falciparum malaria kills many African children, and lack of antibody immunity predisposes to severe disease. A critical antibody target is the P. falciparum erythrocyte membrane 1 (PfEMP1) family of multidomain proteins, which are expressed on the infected erythrocyte surface and mediate parasite sequestration in deep organs. We previously identified var genes encoding PfEMP1 that were differentially expressed between severe and uncomplicated malaria in Papua, Indonesia. Here, we have expressed domains from 32 of these PfEMP1s and measured IgG antibody responses to them in Papuan adults and children. Using Principal Component Analysis, IgG antibodies to three domains distinguished between severe and uncomplicated malaria and were higher in uncomplicated malaria. Domains included CIDRα1.6, implicated in severe malaria; a DBLβ13 domain; and a DBLδ domain of unknown function. Immunity to locally relevant PfEMP1 domains may protect from severe malaria. Targets of immunity show important overlap between Asian adults and African children.


Sign in / Sign up

Export Citation Format

Share Document