malaria transmission
Recently Published Documents


TOTAL DOCUMENTS

1860
(FIVE YEARS 580)

H-INDEX

78
(FIVE YEARS 9)

2022 ◽  
Vol 63 ◽  
pp. 103393
Author(s):  
Quentin Richard ◽  
Marc Choisy ◽  
Thierry Lefèvre ◽  
Ramsès Djidjou-Demasse

npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Kazutoyo Miura ◽  
Eizo Takashima ◽  
Thao P. Pham ◽  
Bingbing Deng ◽  
Luwen Zhou ◽  
...  

AbstractPfs230 is a leading malaria transmission blocking vaccine (TBV) candidate. Comprising 3135 amino acids (aa), the large size of Pfs230 necessitates the use of sub-fragments as vaccine immunogens. Therefore, determination of which regions induce functional antibody responses is essential. We previously reported that of 27 sub-fragments spanning the entire molecule, only five induced functional antibodies. A “functional” antibody is defined herein as one that inhibits Plasmodium falciparum parasite development in mosquitoes in a standard membrane-feeding assay (SMFA). These five sub-fragments were found within the aa 443–1274 range, and all contained aa 543–730. Here, we further pinpoint the location of epitopes within Pfs230 that are recognized by functional antibodies using antibody depletion and enrichment techniques. Functional epitopes were not found within the aa 918–1274 region. Within aa 443–917, further analysis showed the existence of functional epitopes not only within the aa 543–730 region but also outside of it. Affinity-purified antibodies using a synthetic peptide matching aa 543–588 showed activity in the SMFA. Immunization with a synthetic peptide comprising this segment, formulated either as a carrier-protein conjugate vaccine or with a liposomal vaccine adjuvant system, induced antibodies in mice that were functional in the SMFA. These findings provide key insights for Pfs230-based vaccine design and establish the feasibility for the use of synthetic peptide antigens for a malaria TBV.


2022 ◽  
Author(s):  
Halfan Ngowo ◽  
Fredros Oketch Okumu ◽  
Emmanuel Elirehema Hape ◽  
Issa H Mshani ◽  
Heather M Ferguson ◽  
...  

Abstract Background: It is often assumed that the population dynamics of the malaria vector Anopheles funestus, its role in malaria transmission and the way it responds to interventions are similar to the more elaborately characterized An. gambiae. However, An. funestus has several unique ecological features that could generate distinct transmission dynamics and responsiveness to interventions. The objectives of this work were to develop a model which will; 1) reconstruct the population dynamics, survival, and fecundity of wild An. funestus populations in southern Tanzania, 2) quantify impacts of density dependence on the dynamics, and 3) assess seasonal fluctuations in An. funestus demography. Through quantifying the population dynamics of An. funestus, this model will enable analysis of how their stability and response to interventions may different from that of An. gambiae s.l.Methods: A Bayesian State Space Model (SSM) based on mosquito life history was fit to time series data on the abundance of female An. funestus s.s. collected over 2 years in southern Tanzania. Prior values of fitness and demography were incorporated from empirical data on larval development, adult survival and fecundity from laboratory-reared first generation progeny of wild caught An. funestus. The model was structured to allow larval and adult fitness traits to vary seasonally in response to environmental covariates (i.e. temperature and rainfall), and for density dependency in larvae. We measured the effects of density dependence and seasonality through counterfactual examination of model fit with or without these covariates.Results: The model accurately reconstructed the seasonal population dynamics of An. funestus and generated biologically-plausible values of their survival larval, development and fecundity in the wild. This model suggests that An-funestus survival and fecundity annual pattern was highly variable across the year, but did not show consistent seasonal trends either rainfall or temperature. While the model fit was somewhat improved by inclusion of density dependence, this was a relatively minor effect and suggests that this process is not as important for An. funestus as it is for An. gambiae populations.Conclusion: The model's ability to accurately reconstruct the dynamics and demography of An. funestus could potentially be useful in simulating the response of these populations to vector control techniques deployed separately or in combination. The observed and simulated dynamics also suggests that An. funestus could be playing a role in year-round malaria transmission, with any apparent seasonality attributed to other vector species.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Adama Gansané ◽  
Baltazar Candrinho ◽  
Aimable Mbituyumuremyi ◽  
Perpetua Uhomoibhi ◽  
Sagnon NFalé ◽  
...  

Abstract Background Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings. Methods Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data. Conclusions Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
John B. Keven ◽  
Michelle Katusele ◽  
Rebecca Vinit ◽  
Daniela Rodríguez-Rodríguez ◽  
Manuel W. Hetzel ◽  
...  

Abstract Background A malaria control programme based on distribution of long-lasting insecticidal bed nets (LLINs) and artemisinin combination therapy began in Papua New Guinea in 2009. After implementation of the programme, substantial reductions in vector abundance and malaria transmission intensity occurred. The research reported here investigated whether these reductions remained after seven years of sustained effort. Methods All-night (18:00 to 06:00) mosquito collections were conducted using human landing catches and barrier screen methods in four villages of Madang Province between September 2016 and March 2017. Anopheles species identification and sporozoite infection with Plasmodium vivax and Plasmodium falciparum were determined with molecular methods. Vector composition was expressed as the relative proportion of different species in villages, and vector abundance was quantified as the number of mosquitoes per barrier screen-night and per person-night. Transmission intensity was quantified as the number of sporozoite-infective vector bites per person-night. Results Five Anopheles species were present, but vector composition varied greatly among villages. Anopheles koliensis, a strongly anthropophilic species was the most prevalent in Bulal, Matukar and Wasab villages, constituting 63.7–73.8% of all Anopheles, but in Megiar Anopheles farauti was the most prevalent species (97.6%). Vector abundance varied among villages (ranging from 2.8 to 72.3 Anopheles per screen-night and 2.2–31.1 Anopheles per person-night), and spatially within villages. Malaria transmission intensity varied among the villages, with values ranging from 0.03 to 0.5 infective Anopheles bites per person-night. Most (54.1–75.1%) of the Anopheles bites occurred outdoors, with a substantial proportion (25.5–50.8%) occurring before 22:00. Conclusion The estimates of vector abundance and transmission intensity in the current study were comparable to or higher than estimates in the same villages in 2010–2012, indicating impeded programme effectiveness. Outdoor and early biting behaviours of vectors are some of the likely explanatory factors. Heterogeneity in vector composition, abundance and distribution among and within villages challenge malaria control programmes and must be considered when planning them.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Joseph Osarfo ◽  
Gifty Dufie Ampofo ◽  
Harry Tagbor

Abstract Background There has been a global decline in malaria transmission over the past decade. However, not much is known of the impact of this observation on the burden of malaria infection in pregnancy in endemic regions including Ghana. A narrative review was undertaken to help describe trends in malaria infection in pregnancy in Ghana. Among others, such information is important in showing any progress made in malaria in pregnancy control. Methods To describe trends in pregnancy-associated malaria infection in Ghana, a search and review of literature reporting data on the prevalence of asymptomatic Plasmodium falciparum infection in pregnancy was conducted. Results Thirty-six (36) studies, conducted over 1994–2019, were included in the review. In the northern savannah zone with largely seasonal malaria transmission, prevalence appeared to reduce from about 50–60% in 1994–2010 to 13–26% by 2019. In the middle transitional/forest zone, where transmission is perennial with peaks in the rainy season, prevalence apparently reduced from 60% in the late 1990 s to about 5–20% by 2018. In the coastal savannah area, there was apparent reduction from 28 to 35% in 2003–2010 to 5–11% by 2018–2019. The burden of malaria infection in pregnancy continues to be highest among teenagers and younger-aged pregnant women and paucigravidae. Conclusions There appears to be a decline in asymptomatic parasite prevalence in pregnancy in Ghana though this has not been uniform across the different transmission zones. The greatest declines were noticeably in urban settings. Submicroscopic parasitaemia remains a challenge for control efforts. Further studies are needed to evaluate the impact of the reduced parasite prevalence on maternal anaemia and low birthweight and to assess the local burden of submicroscopic parasitaemia in relation to pregnancy outcomes.


2022 ◽  
pp. 1787-1804
Author(s):  
Moulay Abdelmonaim El Hidan ◽  
Kholoud Kahime ◽  
Aimrane Abdelmohcine ◽  
Abdellatif Abbaoui ◽  
Mohamed Echchakery ◽  
...  

Malaria is a mosquito-borne infectious disease caused by obligate intraerythrocytic protozoa of the genus Plasmodium. As one of the most devastating global health issues, malaria is a sensitive disease to weather and climate conditions, in such a way the ongoing trends of increasing temperature and more variable weather could lead to malaria transmission spreading. Spatial and temporal variations in precipitation, temperature, and humidity that are projected to take place under different climate change scenarios will impact the biology and ecology of malaria vectors and subsequently the risk of disease transmission. Here, the authors review how climate and climate change may impact malaria transmission. They contrast ecological and behavioral characteristics of malaria vectors and parasites and how weather, climate, climate change, and socioeconomic factors may have very different impacts on their spatiotemporal occurrence and abundance and the resulting malaria risk.


2021 ◽  
Author(s):  
Shirley A. Onyango ◽  
Kevin O. Ochwedo ◽  
Maxwell G. Machani ◽  
Collince J. Omondi ◽  
Isaiah Debrah ◽  
...  

Abstract BackgroundEvolutionary pressures lead to the selection of efficient malaria vectors either resistant or susceptible to Plasmodiumparasites.These forcesmay elevate the introduction of new species genotypes that adapt to new breeding habitats which could have serious implications on malaria transmission.Thioester-containing protein 1 (TEP1) of Anopheles gambiaeplays an important role in innate immune defenses against parasites. This study aims to characterize the distribution pattern of TEP1 polymorphisms determining vector competence and subsequently malaria transmission in western Kenya. MethodsAnopheles gambiaeadult and larvae were collected using pyrethrum spray catches (PSC) and plastic dippers respectivelyfrom Homa Bay, Kakamega, Bungoma, and Kisumu countiesbetween 2017 and 2020.Collected adults and larvae reared to the adult stage were morphologically identified and then identified to sibling species by PCR.TEP1 alleles were determined using restriction fragment length polymorphisms-polymerase chain reaction (RFLP-PCR) and to validate the TEP1 genotyping results, a representative sample of alleles was sequenced.ResultsTwo TEP1 alleles (TEP1*S1 and TEP1*R2)and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2)were identified. TEP1*S1 and TEP1*R2 with their corresponding genotypes, homozygous *S1/S1 and heterozygous *R2/S1 were widely distributed across all sites with allele frequencies of approximately 80% and 20%, respectively bothin An. gambiaeand An. arabiensis. There was no significant difference detected among the population and between the two mosquito species in TEP1 allele frequency and genotype frequency. The overall low levels in population structure (FST= 0.019) across all sites corresponded to an effective migration index (Nm= 12.571) and lowNei’s genetic distance values (<0.500) among the subpopulation.The comparative fixation index values revealed minimal genetic differentiation between speciesand high levels of gene flow among populations.ConclusionThere is a low genetic diversity and population structure in western Kenya. TEP1* R2 and TEP1*S1 were the most common alleles in both species which may have been maintained through generations in time, However, the TEP1*R2 allele was in low frequencies and may be used to estimatemalaria prevalence. Continued surveillance of the distribution of TEP1 is essential for monitoring the population dynamics of local vectors and their implications on malaria transmission and hence designing targeted vector interventions.


2021 ◽  
Author(s):  
Kinley Wangdi ◽  
Erica Wetzler ◽  
Horace Cox ◽  
Paola Marchesini ◽  
Leopoldo Villegas ◽  
...  

Abstract IntroductionIn 2020, 77% of malaria cases in the Americas were concentrated in Venezuela, Brazil, and Colombia. These countries are characterized by a heterogeneous malaria landscape and malaria hotspots. Furthermore, the political unrest in Venezuela has led to significant cross-border population movement. Hence, the aim of this study was to describe spatial patterns and identify significant climatic drivers of malaria transmission along the Venezuela-Brazil-Guyana border, focusing on Bolivar state, Venezuela and Roraima state, Brazil.MethodsMalaria case data, stratified by species from 2016-2018, were obtained from the Brazilian Malaria Epidemiology Surveillance Information System, the Guyana Vector Borne Diseases Program, the Venezuelan Ministry of Health, and civil society organizations. Spatial autocorrelation in malaria incidence was explored using Getis-Ord (Gi*) statistics. A Poisson regression model was developed with a conditional autoregressive prior structure and posterior parameters were estimated using the Bayesian Markov chain Monte Carlo simulation with Gibbs sampling. Climatic covariates were precipitation and minimum and maximum temperature. ResultsThere were 685,498 malaria cases during the study period. Plasmodium vivax was the predominant species (71.7%, 490,861). Malaria hotspots were located in eight municipalities along the Venezuela and Guyana international borders with Brazil. Plasmodium falciparum decreased by 1.6% (95% credible interval [CrI] 1.5%, 2.3%) and 9.6% (95% CrI 1.5%, 25.2%) per 1 cm increase in six-month lagged precipitation and each 1°C increase of minimum temperature without lag. Each 1°C increase of one-month lagged maximum temperature increased P. falciparum by 6.6% (95% CrI 4.8%, 21.7%). P. vivax cases decreased by 1.0% (95% CrI 1.0%, 1.1%) and 7.0% (95% CrI 6.5%, 7.5%) for each 1 cm increase of precipitation lagged at six-months and 1°C increase in minimum temperature lagged at six-months. There was no significant residual spatial clustering after accounting for climatic covariates.ConclusionMalaria hotspots were located along the Venezuela and Guyana international border with Roraima state, Brazil. In addition to population movement, climatic variables are important drivers of malaria transmission in these areas.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Juan Feng ◽  
Xianchi Dong ◽  
Adam DeCosta ◽  
Yang Su ◽  
Fiona Angrisano ◽  
...  

HAP2 is a transmembrane gamete fusogen found in multiple eukaryotic kingdoms and is structurally homologous to viral class II fusogens. Studies in Plasmodium have suggested that HAP2 is an attractive target for vaccines that block transmission of malaria. HAP2 has three extracellular domains, arranged in the order D2, D1, and D3. Here, we report monoclonal antibodies against the D3 fragment of Plasmodium berghei HAP2 and crystal structures of D3 in complex with Fab fragments of two of these antibodies, one of which blocks fertilization of Plasmodium berghei in vitro and transmission of malaria in mosquitoes. We also show how this Fab binds the complete HAP2 ectodomain with electron microscopy. The two antibodies cross-react with HAP2 among multiple plasmodial species. Our characterization of the Plasmodium D3 structure, HAP2 ectodomain architecture, and mechanism of inhibition provide insights for the development of a vaccine to block malaria transmission.


Sign in / Sign up

Export Citation Format

Share Document