scholarly journals The Severity of Plasmodium falciparum Infection Is Associated with Transcript Levels of var Genes Encoding Endothelial Protein C Receptor-Binding P. falciparum Erythrocyte Membrane Protein 1

2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Sixbert I. Mkumbaye ◽  
Christian W. Wang ◽  
Eric Lyimo ◽  
Jakob S. Jespersen ◽  
Alphaxard Manjurano ◽  
...  

ABSTRACT By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte membrane protein 1 (PfEMP1) subset mediating binding to endothelial receptors. Previous studies indicate that PfEMP1 adhesins with so-called CIDRα1 domains capable of binding endothelial protein C receptor (EPCR) constitute the PfEMP1 subset associated with severe pediatric malaria. To analyze the relative importance of different subtypes of CIDRα1 domains, we compared Pfemp1 transcript levels in children with severe malaria (including 9 fatal and 114 surviving cases), children hospitalized with uncomplicated malaria (n = 42), children with mild malaria not requiring hospitalization (n = 10), and children with parasitemia and no ongoing fever (n = 12). High levels of transcripts encoding EPCR-binding PfEMP1 were found in patients with symptomatic infections, and the abundance of these transcripts increased with disease severity. The compositions of CIDRα1 subtype transcripts varied markedly between patients, and none of the subtypes were dominant. Transcript-level analyses targeting other domain types indicated that subtypes of DBLβ or DBLζ domains might mediate binding phenomena that, in conjunction with EPCR binding, could contribute to pathogenesis. These observations strengthen the rationale for targeting the PfEMP1-EPCR interaction by vaccines and adjunctive therapies. Interventions should target EPCR binding of all CIDRα1 subtypes.

2015 ◽  
Vol 83 (8) ◽  
pp. 3096-3103 ◽  
Author(s):  
Louise Turner ◽  
Thomas Lavstsen ◽  
Bruno P. Mmbando ◽  
Christian W. Wang ◽  
Pamela A. Magistrado ◽  
...  

Severe malaria syndromes are precipitated byPlasmodium falciparumparasites binding to endothelial receptors on the vascular lining. This binding is mediated by members of the highly variantP. falciparumerythrocyte membrane protein 1 (PfEMP1) family. We have previously identified a subset of PfEMP1 proteins associated with severe malaria and found that the receptor for these PfEMP1 variants is endothelial protein C receptor (EPCR). The binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDR) of the subtypes α1.1 and α1.4 to α1.8. In this study, we investigated the acquisition of anti-CIDR antibodies using plasma samples collected in four study villages with different malaria transmission intensities in northeastern Tanzania during a period with a decline in malaria transmission. We show that individuals exposed to high levels of malaria transmission acquire antibodies to EPCR-binding CIDR domains early in life and that these antibodies are acquired more rapidly than antibodies to other CIDR domains. The rate by which antibodies to EPCR-binding CIDR domains are acquired in populations in areas where malaria is endemic is determined by the malaria transmission intensity, and on a population level, the antibodies are rapidly lost if transmission is interrupted. This indicates that sustained exposure is required to maintain the production of the antibodies.


2018 ◽  
Vol 86 (11) ◽  
Author(s):  
Louise Turner ◽  
Thor G. Theander ◽  
Thomas Lavstsen

ABSTRACT Plasmodium falciparum malaria pathogenesis is tied to the sequestration of parasites in the microvasculature. Parasite sequestration leading to severe malaria is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1) binding to endothelial protein C receptor (EPCR) via its CIDRα1 domains. CIDRα1 domains are targets of naturally acquired immunity, and a vaccine eliciting antibodies inhibiting the EPCR binding of CIDRα1 could potentially prevent disease and death from malaria. CIDRα1 domains have diversified in sequence to escape immune recognition but preserved structure to maintain EPCR binding. The EPCR-binding CIDRα1 domains separate into six major sequence types predicted to form a conserved structure in which only the amino acids essential for EPCR binding are highly conserved. Here, we investigated whether antibodies elicited by vaccination with single or multiple recombinant CIDRα1 domains are able to bind and inhibit diverse CIDRα1 domains. We found that EPCR binding-inhibitory antibodies to CIDRα1 variants closely related to those used for vaccination are readily elicited, whereas antibodies binding distant CIDRα1 variants are sporadically generated and are rarely inhibitory. Despite this, sequence similarity correlated poorly with the ability of induced antibodies to inhibit across diverse variants, and no continuous sequence regions of importance for cross-inhibitory antibodies could be identified. This suggested that epitopes of cross-variant inhibitory antibodies were predominantly conformational. Vaccination with immunogens engineered to focus immune responses to specific epitopes or an optimal choice of multiple CIDRα1 variants may improve elicitation of broadly reactive and inhibitory antibody responses.


2016 ◽  
Vol 84 (5) ◽  
pp. 1331-1335 ◽  
Author(s):  
George M. Warimwe ◽  
Abdirahman I. Abdi ◽  
Michelle Muthui ◽  
Gregory Fegan ◽  
Jennifer N. Musyoki ◽  
...  

Plasmodium falciparumerythrocyte membrane protein 1 (PfEMP1), expressed onP. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinicalP. falciparumsamples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservationper seand disease severity within these data. This contrasts with the simple hypothesis thatP. falciparumisolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.


2021 ◽  
Author(s):  
Janavi S Rambhatla ◽  
Gerry Q Tonkin-Hill ◽  
Eizo Takashima ◽  
Takafumi Tsuboi ◽  
Rintis Noviyanti ◽  
...  

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multi-domain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal components analysis, antibodies to three of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults. Importance Severe Plasmodium falciparum malaria kills many African children, and lack of antibody immunity predisposes to severe disease. A critical antibody target is the P. falciparum erythrocyte membrane 1 (PfEMP1) family of multidomain proteins, which are expressed on the infected erythrocyte surface and mediate parasite sequestration in deep organs. We previously identified var genes encoding PfEMP1 that were differentially expressed between severe and uncomplicated malaria in Papua, Indonesia. Here, we have expressed domains from 32 of these PfEMP1s and measured IgG antibody responses to them in Papuan adults and children. Using Principal Component Analysis, IgG antibodies to three domains distinguished between severe and uncomplicated malaria and were higher in uncomplicated malaria. Domains included CIDRα1.6, implicated in severe malaria; a DBLβ13 domain; and a DBLδ domain of unknown function. Immunity to locally relevant PfEMP1 domains may protect from severe malaria. Targets of immunity show important overlap between Asian adults and African children.


2016 ◽  
Vol 12 (11) ◽  
pp. e1006011 ◽  
Author(s):  
Ariel Magallón-Tejada ◽  
Sónia Machevo ◽  
Pau Cisteró ◽  
Thomas Lavstsen ◽  
Pedro Aide ◽  
...  

2015 ◽  
Vol 83 (10) ◽  
pp. 3972-3981 ◽  
Author(s):  
Anine Jeppesen ◽  
Sisse Bolm Ditlev ◽  
Vladyslav Soroka ◽  
Liz Stevenson ◽  
Louise Turner ◽  
...  

ThePlasmodium falciparumerythrocyte membrane protein 1 (PfEMP1) adhesive proteins expressed on the surfaces of infected erythrocytes (IEs) are of key importance in the pathogenesis ofP. falciparummalaria. Several structurally and functionally defined PfEMP1 types have been associated with severe clinical manifestations, such as cerebral malaria in children and placental malaria in pregnant women. PfEMP1 that can bind the Fc part of IgM (Fcμ) characterizes one such type, although the functional significance of this IgM binding to PfEMP1 remains unclear. In this study, we report the identification and functional analysis of five IgM-binding PfEMP1 proteins encoded byP. falciparumNF54. In addition to the VAR2CSA-type PFL0030c protein, already known to bind Fcμ and to mediate chondroitin sulfate A (CSA)-specific adhesion of IEs in the placenta, we found four PfEMP1 proteins not previously known to bind IgM this way. Although they all contained Duffy binding-like ε (DBLε) domains similar to those in VAR2CSA-type PfEMP1, they did not mediate IE adhesion to CSA, and IgM binding did not shield IEs from phagocytosis of IgG-opsonized IEs. In this way, these new IgM-binding PfEMP1 proteins resemble the rosette-mediating and IgM-binding PfEMP1 HB3VAR06, but none of them mediated formation of rosettes. We could map the capacity for Fc-specific IgM binding to DBLε domains near the C terminus for three of the four PfEMP1 proteins tested. Our study provides new evidence regarding Fc-dependent binding of IgM to PfEMP1, which appears to be a common and multifunctional phenotype.


2006 ◽  
Vol 75 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Kirsten Moll ◽  
Fredrik Pettersson ◽  
Anna M. Vogt ◽  
Cathrine Jonsson ◽  
Niloofar Rasti ◽  
...  

ABSTRACT The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important virulence factor on the surface of infected erythrocytes. Naturally acquired antibodies to PfEMP1 expressed by parasites causing severe malaria are suggested to be protective and of major interest for the development of a vaccine against severe disease. In this study, the PfEMP1 expressed by a parasite clone displaying a multiadhesive phenotype associated with severe malaria was well recognized by sera of malaria semi-immune children. The efficiency of the Duffy binding-like 1α (DBL1α) domain of this PfEMP1 was therefore, alone or in combination with two additional DBL1α domains, evaluated as a potential vaccine candidate using both a rodent model and a primate model. Antibodies against the DBL1α domain were generated by immunization with recombinant DBL1α-Semliki Forest virus particles and recombinant protein and analyzed in vitro. The immunized animals were challenged in vivo with various parasite strains or clones. Immunization with the PfEMP1-DBL1α domain abolished the PfEMP1-dependent sequestration of the homologous strain in immunized rats and substantially inhibited parasite adhesion in immunized monkeys. Protection against sequestration of heterologous parasite strains was also confirmed by direct or indirect challenge in the rat model. These results strongly support the use of the DBL1α domain in the development of a vaccine targeting severe malaria.


2013 ◽  
Vol 20 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Harold Obiakor ◽  
Marion Avril ◽  
Nicholas J. MacDonald ◽  
Prakash Srinivasan ◽  
Karine Reiter ◽  
...  

ABSTRACTVAR2CSA, a member of thePlasmodium falciparumerythrocyte membrane protein 1 (PfEMP1) family, is a leading candidate for use in vaccines to protect first-time mothers from placental malaria (PM). VAR2CSA, which is comprised of a series of six Duffy binding-like (DBL) domains, binds chondroitin sulfate A (CSA) on placental syncytiotrophoblast. Several recombinant DBL domains have been shown to bind CSA. In order to identify and develop recombinant proteins suitable for clinical development, DBL2X and DBL3X, as well as their respective third subdomain (S3) from the FCR3 parasite clone, were expressed inEscherichia coli, refolded, and purified. All but DBL3X-S3 recombinant proteins bound to CSA expressed on Chinese hamster ovary (CHO)-K1 cells but not to CHO-pgsA745 cells, which are CSA negative as determined by flow cytometry. All but DBL3X-S3 bound to CSA on chondroitin sulfate proteoglycan (CSPG) as determined by surface plasmon resonance (SPR) analysis. Purified IgG from rats and rabbits immunized with these four recombinant proteins bound homologous and some heterologous parasite-infected erythrocytes (IE). Using a novel flow cytometry inhibition-of-binding assay (flow-IBA), antibodies against DBL3X-S3 inhibited 35% and 45% of IE binding to CSA on CHO-K1 cells compared to results for soluble CSA (sCSA) and purified multigravida (MG) IgG, respectively, from areas in Tanzania to which malaria is endemic. Antibodies generated against the other domains provided little or no inhibition of IE binding to CSA on CHO-K1 cells as determined by the flow cytometry inhibition-of-binding assay. These results demonstrate for the first time the ability to identify antibodies to VAR2CSA DBL domains and subdomains capable of inhibiting VAR2CSA parasite-IE binding to CSA by flow cytometry. The flow cytometry inhibition-of-binding assay was robust and provided an accurate, reproducible, and reliable means to identify blocking of IE binding to CSA and promises to be significant in the development of a vaccine to protect pregnant women.


Sign in / Sign up

Export Citation Format

Share Document