A large proportion of bovine T cells express the γδ T cell receptor and show a distinct tissue distribution and surface phenotype

1989 ◽  
Vol 1 (5) ◽  
pp. 540-545 ◽  
Author(s):  
Charles R. Mackay ◽  
Wayne R. Hein
1991 ◽  
Vol 3 (11) ◽  
pp. 1067-1075 ◽  
Author(s):  
Yoshihiro Watanabe ◽  
Tetsuo Sudo ◽  
Nagahiro Minato ◽  
Akio Ohnishi ◽  
Yoshimoto Katsura

2006 ◽  
Vol 27 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Michelle Alexander ◽  
TanJanika Daniel ◽  
Irshad H. Chaudry ◽  
Mashkoor A. Choudhry ◽  
Martin G. Schwacha

2007 ◽  
Vol 204 (11) ◽  
pp. 2537-2544 ◽  
Author(s):  
Gabrielle M. Siegers ◽  
Mahima Swamy ◽  
Edgar Fernández-Malavé ◽  
Susana Minguet ◽  
Sylvia Rathmann ◽  
...  

The γδ T cell receptor for antigen (TCR) comprises the clonotypic TCRγδ, the CD3 (CD3γε and/or CD3δε), and the ζζ dimers. γδ T cells do not develop in CD3γ-deficient mice, whereas human patients lacking CD3γ have abundant peripheral blood γδ T cells expressing high γδ TCR levels. In an attempt to identify the molecular basis for these discordant phenotypes, we determined the stoichiometries of mouse and human γδ TCRs using blue native polyacrylamide gel electrophoresis and anti-TCR–specific antibodies. The γδ TCR isolated in digitonin from primary and cultured human γδ T cells includes CD3δ, with a TCRγδCD3ε2δγζ2 stoichiometry. In CD3γ-deficient patients, this may allow substitution of CD3γ by the CD3δ chain and thereby support γδ T cell development. In contrast, the mouse γδ TCR does not incorporate CD3δ and has a TCRγδCD3ε2γ2ζ2 stoichiometry. CD3γ-deficient mice exhibit a block in γδ T cell development. A human, but not a mouse, CD3δ transgene rescues γδ T cell development in mice lacking both mouse CD3δ and CD3γ chains. This suggests important structural and/or functional differences between human and mouse CD3δ chains during γδ T cell development. Collectively, our results indicate that the different γδ T cell phenotypes between CD3γ-deficient humans and mice can be explained by differences in their γδ TCR composition.


2021 ◽  
Vol 118 (49) ◽  
pp. e2110288118
Author(s):  
Michael T. Rice ◽  
Anouk von Borstel ◽  
Priyanka Chevour ◽  
Wael Awad ◽  
Lauren J. Howson ◽  
...  

Unlike conventional αβ T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1+ and Vδ2+ γδ TCR-mediated ligand recognition, the mode of Vδ3+ TCR ligand engagement is unknown. MHC class I–related protein, MR1, presents vitamin B metabolites to αβ T cells known as mucosal-associated invariant T cells, diverse MR1-restricted T cells, and a subset of human γδ T cells. Here, we identify Vδ1/2− γδ T cells in the blood and duodenal biopsy specimens of children that showed metabolite-independent binding of MR1 tetramers. Characterization of one Vδ3Vγ8 TCR clone showed MR1 reactivity was independent of the presented antigen. Determination of two Vδ3Vγ8 TCR-MR1-antigen complex structures revealed a recognition mechanism by the Vδ3 TCR chain that mediated specific contacts to the side of the MR1 antigen-binding groove, representing a previously uncharacterized MR1 docking topology. The binding of the Vδ3+ TCR to MR1 did not involve contacts with the presented antigen, providing a basis for understanding its inherent MR1 autoreactivity. We provide molecular insight into antigen-independent recognition of MR1 by a Vδ3+ γδ TCR that strengthens an emerging paradigm of antibody-like ligand engagement by γδ TCRs.


Sign in / Sign up

Export Citation Format

Share Document